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Abstract

This paper develops a theory of endogenously (non-)Ricardian beliefs. That is,
whether Ricardian Equivalence holds in an equilibrium depends on endogenous private
sector beliefs about whether the sequence of real primary surpluses suffices to satisfy the
government’s intertemporal budget constraint. The novelty here is a restricted percep-
tions viewpoint: agents, when facing a complex forecasting problem, forecast aggregate
state variables with (potentially) misspecified models that are optimal within the re-
stricted class, i.e., a restricted perceptions equilibrium (RPE). A misspecification equi-
librium is a refinement of an RPE where the choice of restricted model is endogenous.
Two natural forecasting rules arise in which for one rule Ricardian beliefs emerge as a
self-confirming equilibrium, while the other features an equilibrium with non-Ricardian
beliefs. We show that (1.) there can exist misspecification equilibria where beliefs are
endogenously (non-)Ricardian, (2.) multiple equilibria exist where the economy can
coordinate on either a Ricardian or non-Ricardian equilibrium. The theory suggests a
novel interpretation of post-war U.S. inflation data as being generated by endogenous
belief-driven regime change. We explore this possibility quantitatively and estimate
the latent states in order to provide evidence of time-varying (non-)Ricardian beliefs.
Several counterfactual exercises illustrate a novel and nuanced trade-off in designing
monetary policy rules.
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1 Introduction

This paper proposes a theory of expectation formation where Ricardian equivalence, or its
failure, arises endogenously as an equilibrium outcome. The theory builds on the imperfect
knowledge environment in the seminal Eusepi and Preston (2018a) where individuals and
firms have imperfect knowledge about the future path of government debt and how taxes will
be adjusted accordingly. Agents hold subjective beliefs over the paths of government debt,
taxes, and the other endogenous state variables. The departure point in this paper is to en-
dow agents with a choice of between two forecasting models: the first nests Ricardian beliefs
– that is, where the private-sector holds beliefs that the path of future taxes will be sufficient
to satisfy the government’s intertemporal budget constraint – within a self-confirming equi-
librium, while the other does not. The fact that Ricardian equivalence holds on, but not off,
the self-confirming equilibrium path is the key observation in constructing equilibria where
Ricardian equivalence fails. The equilibrium concept is a misspecification equilibrium where
the choice of models is endogenous and agents only select the best-performing statistically
optimal model. When certain necessary and sufficient conditions are satisfied, beliefs are
Ricardian and (self-confirming) Ricardian equivalence is sustained within a misspecification
equilibrium. Critically, we demonstrate the possibility of multiple equilibria, where there
exists simultaneously (non-)Ricardian beliefs. This latter possibility suggests an alternative
interpretation of U.S. inflation data as arising from belief-driven regime-shifts, rather than
policy-driven regime change.

A long important question in economics is when does Ricardian equivalence hold or fail?
The answer to this question is important for the design of monetary and fiscal policy as it
can be the difference between inflation being a monetary or fiscal phenomenon. An extensive
literature has identified conditions under which there is a “fiscal theory of the price-level”
that can arise when Ricardian equivalence fails. For example, Leeper (1991), and the ensuing
literature, show that in a policy regime where fiscal policy is non-Ricardian and monetary
policy is not committed to price stability, there exists a unique rational expectations equilib-
rium where government debt becomes an important state variable. Davig and Leeper (2006)
provide evidence in favor of a model of inflation driven by regime-switching policy regimes.
Recently, Bianchi and Ilut (2017) incorporates uncertainty about the policy regimes to show
that private sector (rational) beliefs play an important role in generating high inflation rates
during the 1970’s.1

The breakthrough paper by Eusepi and Preston (2018a) opened a new avenue for research
into the implications for inflation in an environment where the private sector has imperfect
knowledge about long-run fiscal and monetary policies.2 In these models, individuals have

1See Leeper and Leith (2016) for a recent overview of this literature.
2See also Evans et al. (2012), Eusepi and Preston (2012), and Woodford (2013).
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imperfect knowledge about whether the paths for primary surpluses will adjust to satisfy the
government’s intertemporal budget constraint. Eusepi and Preston (2018a) develop their
insights within a New Keynesian model where individuals and firms have imperfect knowl-
edge but form expectations from a well-specified forecasting model that nests the rational
expectations equilibrium. These agents behave like econometricians by estimating the co-
efficients of their model in real-time. When these estimated coefficients depart from their
rational expectations equilibrium values, Ricardian equivalence fails even though the policy
regime is Ricardian. Eusepi and Preston (2018a) provide strong empirical evidence in favor
of imperfect knowledge as an explanation for observed U.S. inflation and a central role played
by non-Ricardian beliefs in high-debt economies. Relatedly, Woodford (2013) imparts to the
private-sector a parsimonious, but misspecified, forecasting model for the economy that leads
to a restricted perceptions equilibrium where Ricardian equivalence fails.

In the present study, we construct an economic environment where whether beliefs are
Ricardian or not is determined endogenously within an equilibrium. The basic economic
environment is New Keynesian where households in the economy are ex-ante identical and
derive decision rules from an infinite horizon optimization problem given their subjective
beliefs about payoff-relevant aggregate variables. In addition, including a Calvo (1983) nom-
inal pricing friction gives rise to the usual New Keynesian IS and AS equations that depend
on subjective beliefs. Economic policy is given by a pair of linear feedback rules for nominal
interest rates and lump-sum taxes. Fiscal policy is Ricardian in that the lump-sum tax rule is
set to ensure that taxes are adjusted to satisfy the government’s long-run budget constraint
and monetary policy is “active,” i.e. the interest rate rule reflects a commitment to price
stability. In a “temporary equilibrium”, without a priori imposing private-sector Ricardian
beliefs, the aggregate state variables depend, in part, on the existing stock of debt and the
contemporaneous primary surplus. A forecasting model linear in these variables, as well as
the other state variables, nests the rational expectations equilibrium.

We formalize our ideas by taking a step away from rational expectations and adopt a
restricted perceptions viewpoint (see, Branch and McGough, 2018; Woodford, 2013): indi-
viduals formulate expectations from one of two parsimonious forecasting models restricted to
include a single fiscal variable as a predictor. In a restricted perceptions equilibrium agents’
beliefs are optimal within the restricted class implying that, within the context of their
model, the agents cannot detect their misspecification. We refine the set of restricted per-
ceptions equilibria by endogenizing the predictor choice within a misspecification equilibrium
where private sector beliefs come only from those misspecified models that forecast best in a
statistical sense. The first model, which includes the existing stock of debt, naturally formal-
izes endogenous Ricardian beliefs as a self-confirming equilibrium, while the second model,
which includes the primary surplus as a predictor, does not. In our theoretical analysis, we
provide necessary and sufficient conditions for Ricardian beliefs to emerge as a self-confirming
equilibrium and for non-Ricardian beliefs to be sustained in equilibrium.
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Our main results show that (non-)Ricardian beliefs arise endogenously as an equilib-
rium outcome and the data predict that beliefs are heterogeneous, time-varying and non-
Ricardian. We begin by showing that the debt-based forecasting model leads to a restricted
perceptions equilibrium where Ricardian equivalence is a self-confirming equilibrium: al-
though, out of equilibrium, the debt forecasting model is misspecified, in equilibrium be-
liefs about the possible paths for future debt is correct and real variables display a (weak)
Ricardian equivalence. Conversely, the surplus-based model leads to a restricted percep-
tions equilibrium where Ricardian equivalence fails. Contrasting the equilibrium paths, the
non-Ricardian path for output and consumption reacts less strongly on impact from a tax
innovation but the effect is more persistent.

We then turn to our main interest: providing necessary and sufficient conditions for the
existence of endogenously (non-)Ricardian beliefs. We accomplish this by focusing on the
properties of a misspecification equilibrium (Branch and Evans, 2006a) where individuals
only select the best performing model. Because of the self-referential features of the model,
this predictor choice is endogenous and depends on the distribution of agents across models.
Depending on the coefficients in the policy rule and other structural parameters, it is pos-
sible for (non-)Ricardian beliefs to arise as the unique misspecification equilibrium. Most
interestingly, under certain conditions – consistent with standard parameter estimates –
multiple equilibria exist. That is, an economy can coordinate on a Ricardian self-confirming
equilibrium or a non-Ricardian equilibrium. The existence of multiple equilibria implies
the possibility for real-time learning dynamics that recurrently switch between the basins of
attraction for each of the equilibria.

The latter result suggests an alternative, natural interpretation of post-war U.S. inflation
data. In particular, multiple equilibria imply that along a real-time learning path – where
agents update their model coefficients and choose their models in real-time – the extent of
non-Ricardian beliefs can evolve over time endogenously and display regime-switching beliefs.
The model-predicted paths for the endogenous state variables, including the latent subjective
belief states such as the distribution of agents across forecasting models, is estimated using
the Extended Kalman Filter on U.S. data for the period 1960-2007:3. The estimates indicate
that the data are consistent with a model that switches between mostly Ricardian and non-
Ricardian agents. Like Eusepi and Preston (2018a) the model here holds the policy regime
constant. The estimates of the latent states suggest that the late 1980’s-1990’s was a period
of non-Ricardian equilibria.3

The paper then turns to several counterfactual exercises, similar to Bianchi (2013), that
3There is an extensive literature that models, for instance, the Great Inflation as arising from a policy

regime change to a non-Ricardian set of policy rules and a fiscal theory of the price-level. In this paper, we
focus on the model’s step ahead predictions over the post-war period. A more complete examination would
allow for endogenously (non-)Ricardian beliefs and regime-switching policy rules.
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further exposit the mechanics of the model. One set of counterfactuals looks at the con-
sequences for the economy if the monetary policy rule was chosen to take a more, or less,
hawkish stance. There is a nuanced trade-off faced by policymakers that arises directly
because of the theory of expectation formation proposed here. On the one hand, a more
hawkish policy rule, all else equal, would have led to more frequent belief regime-switching
which would have produced greater economic volatility, offsetting the usual stabilizing effect
of a more hawkish policy.4 On the other hand, a more dovish monetary policy rule would
have coordinated the economy on the Ricardian self-confirming equilibrium more often, but
with the less aggressive policy response economic volatility also would have been higher.

Is our specification for beliefs reasonable? We argue yes, for three reasons. First, to
know that these models are misspecified requires the agents to know the form of the model
consistent forecasting equation. However, model consistency here requires that agents hold
a great deal of knowledge about the structural features of the economy such as beliefs,
constraints, and decision rules of the other agents in the economy including the government
and whether its tax rule will adjust to satisfy the solvency condition. In a complex forecasting
environment, especially with a large number of state variables and a potential degrees-of-
freedom limitation, it is standard applied econometric practice to formulate parsimonious
forecasting models. Without knowing the data generating process, and which state variables,
including the number of lags, enter the debt transition equation, it is not difficulto see that a
forecaster will encounter a degree of freedom problem. Here that parsimony takes the form
of models that include a single fiscal variable, either government surplus or debt. Moreover,
since the debt-model nests Ricardian beliefs as a self-confirming equilibrium, it is a perfectly
reasonable predictor for agents to adopt. However, we do not impose this a priori and allow
agents to select the surplus-model if it produces more accurate forecasts. Thus, the choice
of model is an equilibrium outcome. Second, it is a natural way to formalize endogenously
(non-)Ricardian beliefs. In the end, we give private-sector agents a choice between a self-
confirming Ricardian equilibrium and a non-Ricardian equilibrium. Interestingly, we provide
necessary and sufficient conditions for both equilibria to exist for the same set of parameter
values. Then, we let the data speak to what extent are beliefs (non-)Ricardian. Finally,
the mean dynamics of a correctly specified model show that the non-Ricardian equilibrium
can be an “escape” point, therefore, its existence has implications for the dynamics of an
economy that does not impose restricted perceptions. The key assumption is that beliefs
are potentially misspecified off the equilibrium path. Then learning dynamics can generate
endogenous escapes from the self-confirming equilibrium.

The paper proceeds as follows. The subsequent Section 2 discusses the related literature
followed by Section 3’s presentation of the model. Section 4 delivers the primary theoretical

4See Orphanides and Williams (2005) and Eusepi and Preston (2018b) for details on how monetary policy
is able to anchor expectations in imperfect knowledge environments.
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results, beginning first with the special analytic case considered in Woodford (2013). Section
5 presents the quantitative analysis, while section 6 concludes.

2 Related literature

This paper is related to a large literature that examines monetary policy design when ra-
tional expectations are replaced with an adaptive learning rule. Key contributions include
Bullard and Mitra (2002), Evans and Honkapohja (2003), and Preston (2005). Typically
models in this literature endow agents with correctly specified forecast models and focus on
expectational stability of rational expectations equilibria as an equilibrium refinement and
desirable outcome for monetary policy rules. There has also been research that character-
izes fiscal and monetary policy interaction, e.g., Leeper (1991) under adaptive learning, c.f.,
Evans and Honkapohja (2007) and Branch et al. (2008). Gasteiger (2018) directly extends
these frameworks to include heterogeneous expectations, while Eusepi and Preston (2011,
2012) study the implications in a sticky price model. Furthermore, Evans et al. (2012) ex-
amine the conditions under which Ricardian equivalence holds or fails when expectations are
formed via adaptive learning.

The theory of restricted perceptions proposed here fits into a growing branch in the
literature that equips agents with plausibly misspecified forecasting models and proposes
equilibria in which beliefs are optimal within the restricted class, see Sargent (1999), Branch
(2006), Branch and Evans (2006b), Sargent (2008), and Branch and McGough (2018). This
paper builds on an insight fromWoodford (2013) where an example of a restricted perceptions
equilibrium is considered that leads to a failure of Ricardian equivalence, in particular when
agents forecast with the surplus-model even though the policy regime is Ricardian. In short,
this paper takes the theory of forecast misspecification in Branch and Evans (2006b) into
the Eusepi and Preston (2018a) environment with fiscal and monetary policy interaction and
generalizing the restricted perceptions beliefs in Woodford (2013).

The theory is also closely related to Sargent (1999), Cho et al. (2002), and Williams
(2018). These papers all study the escape dynamics from self-confirming equilibria. Much
of the insight in this paper is related to the escape dynamics models. The dynamics in our
model are also closely related to Cho and Kasa (2015) and Cho and Kasa (2017), which make
innovations in applying large deviation theory to the problem of private sector model selec-
tion. In particular, Cho and Kasa (2017) develop a model of expectation formation where
agents have available two forecasting models, one which is self-confirmed in an equilibrium
and the other is misspecified on and off the equilibrium path. Rather than selecting a single
model, each agent makes forecasts as a Bayesian average of the two forecasting models. They
show that it is possible for an asset-pricing model to converge to the restricted perceptions
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equilibrium with full probability weight assigned to the misspecified model. Here we also
have two models, one that can be self-confirmed along an equilibrium path and the other can-
not. Our results show that an equilibrium can emerge where everyone has the misspecified
beliefs that, in the context of the model presented here, imply non-Ricardian equivalence.

Our paper is also related to a long-standing tradition of constructing equilibria with the
property that inflation is (partly) driven by fiscal policy. In his original contribution, Leeper
(1991) shows that an active fiscal policy, combined with a monetary policy not committed
to price stability, will generate inflation driven by fiscal variables, i.e., the “fiscal theory
of the price-level.” See also, Sims (1994), Cochrane (2001) and Woodford (2001). Recent
related research explain post-war U.S. inflation via recurrent change between non-Ricardian
and Ricardian policy regimes. Examples include Davig and Leeper (2006), Sims (2011),
and Bianchi and Ilut (2017). These papers also derive their results from an important
role given to non-Ricardian beliefs. This has two implications. First, when agents assign
a positive probability to a change from the Ricardian policy regime to the non-Ricardian
policy regime, then the beliefs imply failure of Ricardian equivalence and inflation is, in
part, a fiscal phenomenon. Second, as discussed in Leeper and Leith (2016), there may be
an observational equivalence between the Ricardian and non-Ricardian regimes that makes
econometric identification of policy regimes elusive. Thus, it is open whether belief-driven
regime-change of the type identified here is a plausible alternative. Finally, the results here
do not show that policy regime change is not an important part of the inflation story. In fact
more subtle changes, within the Ricardian policy regime, can generate belief-driven regime
change.

Finally, the theory here is inspired by, and builds on, Eusepi and Preston (2018a) who
show that replacing rational expectations with an adaptive learning rule produces temporary
equilibrium dynamics that feature departures from Ricardian equivalence. In addition, their
paper illustrates how the maturity structure of government debt has important implications
for inflation in a non-Ricardian belief economy. They also estimate a quantitative version
of their model and conduct counter-factual analyses that demonstrate that perceived net
wealth may be an especially important factor in high debt economies.

3 Model

Woodford (2013) demonstrates that, following Eusepi and Preston (2018a), restricted per-
ceptions about the government’s intertemporal budget constraint can lead to a failure of
Ricardian equivalence even in instances where policy would be Ricardian under rational ex-
pectations, i.e., active monetary/passive fiscal in the Leeper (1991) sense. We generalize
the Woodford (2013) framework to see how, and whether, (non-)Ricardian beliefs arise in
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equilibrium.

The setting is a New Keynesian model with subjective expectations, in particular, a sim-
plified version of Preston (2005), based on Woodford (2003, ch.4).5 Households and firms
have beliefs about payoff-relevant aggregate variables and choose consumption, leisure, and
one-period government debt, the only asset available to households, to solve their intertem-
poral optimization problem given their subjective beliefs about future state variables.6 In
Woodford’s (2013) framework, households turn over wage-setting and labor supply decisions
to a union and are, therefore, obligated to supply labor to a firm on the union’s terms.
Households also receive a lump-sum transfer of their share in firm profits.7 This is a styl-
ized assumption that renders the consumption rule of the household analogous to the one in
an economy where the household receives a stochastic endowment. However, because firms
are monopolistically competitive, and face a Calvo (1983) nominal pricing friction, there is
endogenous variation in hours and output. This formulation is particularly helpful in the
presence of heterogeneous beliefs.8 Finally, the model is closed by specifying a Taylor-rule
for the setting of nominal interest rates and a fiscal rule that passively adjusts the primary
surplus to the stock of existing debt.

Households.

Woodford (2013) derives an individual’s consumption function,

cit = (1− β)bit +
∞∑
T=t

βT−tEi
t{(1− β)(YT − τT )− βσ(βiT − πT+1)

+ (1− β)sb(βiT − πT )− β(c̄T+1 − c̄T )}, (1)

where bit is the individual’s holdings of real government debt, Yt, πt, it, τt are aggregate output,
the inflation rate, the nominal interest rate (i.e. the monetary policy instrument), and lump-

5In Eusepi and Preston (2018a) there are two assets, one period government bonds in zero net-supply and
longer maturity bonds. Eusepi and Preston (2018a) demonstrate the important role that maturity structure,
combined with imperfect knowledge and learning, can play in generating non-Ricardian wealth effects.

6It is typical in boundedly rational learning models to assume that agents optimize intertemporally with
the anticipated utility approach (see, e.g., Kreps, 1998). This approach assumes that agents take their
beliefs as given when solving their optimization problem and, so, if their beliefs evolve along a learning
path the agent, when optimizing, is always dogmatic that the learning process has come to an end. In our
main theoretical analysis, this assumption is unnecessary because we assume stationary beliefs within the
restricted perceptions equilibrium. In the quantitative analysis, when we allow for real-time learning, then
we implement anticipated utility.

7The shares in firms are illiquid, which makes government debt the only storable good. Eusepi and
Preston (2018a) show that this assumption is consequential for non-Ricardian beliefs. Though, we abstract
from these issues, it is worth bearing in mind that the issue is relevant within our non-Ricardian equilibrium.

8The union’s negotiator seeks to maximize average expected lifetime utility.
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sum taxes (the fiscal instrument). The government also has an exogenous sequence Gt of its
own private consumption of the good. The parameter 0 < β < 1 is the discount rate, σ is the
elasticity of intertemporal substitution, and sb ≡ b̄/Ȳ is the steady-state debt-to-GDP ratio.
The random variable c̄t is a preference shock. All variables are in log deviation from the
zero-inflation steady state. Following Woodford (2013), we find it convenient to represent
the fiscal policy instrument in terms of the surplus st = τt −Gt.

The first two terms in (1) dictate how consumption responds to government bond holdings
and disposable income, respectively. The first term is sometimes called a “wealth effect”. The
third term, parameterized by σ, captures an intertemporal substittution effect resulting from
variations in the (perceived) ex-ante real interest rate. The fourth term, pre-multiplied by
sb, is the perceived real return on government bond holdings. Woodford (2013) describes
this term as an “income effect.” Note that from the final term that a positive preference
shock, c̄t, implies a stronger desire for contemporaneous consumption.

Following the seminal Eusepi and Preston (2018a), Woodford (2013) derives equation
(1) without assuming that individuals have structural knowledge about the government’s
intertemporal budget constraint. Even though fiscal policy is set passively, individuals do
not necessarily know this, and the other structural features, and so they have imperfect
knowledge about the structural form of the government’s endogenously determined budget
constraint. Instead, they form subjective beliefs over the evolution of aggregate variables.
If they get those beliefs right then they will properly account for the evolution of debt, and
beliefs will be Ricardian. Otherwise, beliefs may be non-Ricardian. Eusepi and Preston
(2018a) demonstrate that along an adaptive learning path, beliefs will temporarily diverge
from Ricardian equivalence.

We are now ready to formally define Ricardian and non-Ricardian beliefs. Both Eusepi
and Preston (2018a) and Woodford (2013) define Ricardian private sector beliefs as being
consistent with the government’s intertemporal budget constraint. In particular, Ricardian
beliefs arise when the following condition on beliefs is satisfied

Ei
t

{
∞∑
T=t

βT−t [sT − sb(βiT − πT )]

}
= bt.

Then imposing Ricardian beliefs onto the consumption rule (1) leads to a consumption
function that satisfies Ricardian equivalence:

cit =
∞∑
T=t

βT−tEi
t{(1− β)(YT − gT )− βσ(βiT − πT+1),

where gt = Gt + c̄t is a composite consumption shock.
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On the other hand, with non-Ricardian beliefs the path of future surpluses has a direct
effect on consumption:

cit =
∞∑
T=t

βT−tEi
t{(1− β)(YT − gT )− βσ(βiT − πT+1)}

(1− β)bit +
∞∑
T=t

βT−tEi
t{(1− β)sb(βiT − πT )− sT}}.

Evidently, non-Ricardian beliefs lead households to perceive holdings of government debt as
real wealth and a change in the expected path for future surpluses can have a real effect on
consumption.9 In our theory, we posit two forecasting models that, in equilibrium, will differ
in whether beliefs are Ricardian or not.

One can rearrange terms in (1) so that

cit = (1− β)bit + (1− β)(Yt − τt)− β[σ − (1− β)sb]it − (1− β)sbπt + βc̄t + βEi
tv
i
t+1, (2)

where the subjective composite variable vit is defined as

vit ≡
∞∑
T=t

βT−tEi
t{(1− β)(YT − τT )− [σ − (1− β)sb](βiT − πT )− (1− β)c̄T}.

This variable comprises all payoff-relevant aggregate variables over which a household for-
mulates subjective beliefs.

Following Woodford (2013), express vit recursively as

vit = (1− β)(Yt − τt)− [σ − (1− β)sb](βit − πt)− (1− β)c̄t + βÊi
tv
i
t+1. (3)

Rather than needing to specify beliefs about each of the aggregate variables that comprise
vi, the agent just needs to forecast this subjective continuation-value variable.10

Firms.

9In all of the analysis below, the fiscal rule is ex post Ricardian, i.e., real primary surpluses will satisfy
the government’s intertemporal constraint. However, out of equilibrium, non-Ricardian beliefs could be
consistent with explosive debt. The consequences of this, and its implications for strategic behavior, is an
old issue in the fiscal theory of the price level literature (cf. Bassetto, 2002).

10On the surface, formulating expectations over future vit seems to be adopting the Euler equation approach
of one-step ahead forecasting and decision-making. However, the derivation of the consumption function
and vit is based on the infinite-horizon approach where the household’s consumption/savings decisions solve
their entire sequence of Euler equations, flow budget constraints, and transversality condition given their
subjective. We show below how these consumption rules can be aggregated with heterogeneous agents.
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Firms are monopolistically competitive and face a nominal pricing friction based on Calvo
(1983). An individual firm j produces a differentiated good, but can only optimally (re-)set
its price in period t, if it belongs to the share 0 < α < 1 of firms that receives the idiosyncratic
signal to reset the price.

The implied aggregate inflation dynamics are given by

πt = (1− α)p∗t , (4)

where p∗t ≡
∫
p∗t (j)dj is the average of the price changes compared to price level pt−1 by firms

that can reset prices and p∗t (j) denotes the individual price change of firm j.

A firm j that can optimally reset price p∗t (j) will do so to satisfy the first-order condition

p∗t (j) =(1− αβ)
∞∑
T=t

(αβ)T−t
(
Ej
t p

opt
T − pt−1

)
,

where Ej
t p

opt
T is the perceived optimal price in period T . This condition can be written

recursively:

p∗t (j) =(1− αβ)
(
Ej
t p

opt
t − pt−1

)
+ (αβ)Ej

t p
∗
t+1(j) + (αβ)πt, where (5)

Ej
t p
∗
t+1(j) ≡(1− αβ)

∞∑
T=t

(αβ)T−t
(
Ej
t p

opt
T+1 − pt

)
.

Policy.

Monetary policy is described by a Taylor (1993) rule,

it = φππt + φyyt + wt, (6)

where the coefficients are assumed to be φπ, φy > 0 and the monetary policy shock is
wt ∼ iid(0, σ2

w). In the theoretical analysis, we assume white noise shocks. However, in
the quantitative analysis we assume all exogenous shocks are stationary AR(1)’s.

Fiscal policy is characterized by a rule for the real primary surplus, st ≡ τt −Gt, where
Gt measures (exogenous) government purchases. Fiscal policy follows the rule

st = φbbt + zt, (7)

where the surplus shock is zt ∼ iid(0, σ2
z). This is a standard fiscal policy rule since Leeper

(1991).
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Finally, the government faces a flow budget constraint that, linearized around the steady-
state, can be written as

bt+1 = β−1[bt − sbπt − st] + sbit. (8)

Notice that, as bt is predetermined, this specification of monetary and fiscal policy nests
the classic policy set-up of Leeper (1991). The parameter sb plays an important role in the
results presented below. When sb = 0 the bond and primary surplus paths are exogenous
while sb > 0 implies that they are endogenous and affected, in part, by monetary policy.11

Throughout the paper, analysis is restricted to the active monetary (AM) and passive
fiscal (PF) fiscal policy regime

1 < φπ +
1− β
κ

φy

(1− β) < φb < 1. (9)

Under the benchmark rational expectations hypothesis, there is local determinacy (see, Leeper,
1991) implying that this locally unique rational expectations equilibrium displays Ricardian
equivalence and is stable under least-squares learning (see, Evans and Honkapohja, 2007).
We follow Eusepi and Preston (2012) in assuming a constant policy regime that is consistent
with Ricardian equivalence under rational expectations. By abstracting from non-Ricardian
policy, or regime-changing policy regimes, provides us with a stark example of the potentially
important role of endogenously time-varying Ricardian beliefs.

Market clearing and equilibrium.

Aggregate demand is given by the income- expenditure identity, i.e.,

Yt =

∫
citdi+Gt. (10)

Applying (2) and (3) to (10) allows us to express aggregate demand as

Yt = gt + (1− β)bt + vt − σπt, (11)

where a composite exogenous disturbance gt ≡ c̄t + Gt, such that gt ∼ iid(0, σ2
g) and bond

market clearing requires that the aggregate supply of one-period government bonds bt ≡∫
bitdi are defined accordingly.12 Similarly, for the subjective state variable, i.e., vt =

∫
vitdi.

11This formulation arises in a cashless environment that allows us to abstract from the effect of monetary
aggregates appearing in the consolidated budget constraint.

12Below, we discuss market clearing with heterogeneous beliefs in greater detail.
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Notice that we can use (8) and (11) to express the composite variable defined in (3) as

vit = (1− β)vt + (1− β)β(bt+1 − bt)− βσ(it − πt) + βEi
tv
i
t+1. (12)

Averaging over expectations in (12) and applying the result to (11) yields the “IS equation”
without a priori imposing Ricardian beliefs:

Yt = gt − σit + (1− β)bt+1 +

∫
Ei
tv
i
t+1di. (13)

Next, as in Woodford (2013, Section 2.3), in equilibrium the optimal price in this model
can be expressed as

popt
t = pt + ξ (Yt − Y n

t ) + µt, (14)

where ξ > 0 is a composite term of structural parameters measuring the output elasticity of a
firm’s optimal price.13 The exogenous random variable Y n

t is the natural level of output that
captures exogenous demand shocks and µt represents disturbances to the desired markup
over marginal cost.

As the firm’s price is a decision variable, it is natural to impose that Ej
t p

opt
t = popt

t . It
follows, then, from plugging (14) and (4) into (5) that

p∗t (j) = (1− α)p∗t + (1− αβ) [ξyt + µt] + αβEj
t p
∗
t+1(j). (15)

Again averaging across firms, using (4), defining the output gap as yt ≡ Yt−Y n
t , parameter

κ ≡ [(1− α)(1− αβ)ξ]/α, and the cost-push supply shock as ut ≡ {[(1− α)(1− αβ)]/α}µt,
yields the New Keynesian Phillips curve

πt = (1− α)β

∫
Ej
t p
∗
t+1(j)dj + κyt + ut. (16)

Let us next define a temporary equilibrium (TE) following Woodford (2013).

DEFINITION 1. Given exogenous processes {gt, ut, wt, zt}, a temporary equilibrium, given
subjective expectations, is a stochastic process for the triple {πt, yt, bt+1}, where the latter
satisfy (8), (16), (13), {p∗t (j), vit} satisfy (12) and (15), and a path for policy {it, st} given
by rules (6) and (7).

Below, we refine the equilibrium by a theory of subjective expectations that are deter-
mined within a restricted perceptions equilibrium and a further refinement, misspecification

13The term is defined in Woodford (2003, ch.3-4).
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equilibria, that pins down the distribution of (potentially) heterogeneous beliefs.

Model misspecification.

A key insight from Eusepi and Preston (2018a) is that in environments where people have
imperfect knowledge of the economic data generating process it is not reasonable to impose
a priori that beliefs by individual i about future spending and taxes satisfies

Ei
t

{
∞∑
T=t

βT−t [sT − sb(βiT − πT )]

}
= bt.

Theoretically, we construct equilibria, and provide conditions under which, beliefs along an
equilibrium path may, or may not, satisfy this Ricardian belief condition.

Under homogeneous rational expectations, the equilibrium laws of motion are given by
the equations:

bt+1 = β−1 (bt − sbπt − st) + sbit

yt = vt − σπt + gt + (1− β)bt

vt = (1− β) (bt+1 − bt)− σ (it − πt) + Etvt+1

πt = κyt + (1− α)βEtp
∗
t+1 + ut

st = φbbt + wt

it = φππt + φyyt + zt.

It is straightforward to verify, therefore, that under full information rational expectations
that the equilibrium law of motion is of the form πt

vt
yt

 = A

[
bt
st

]
+ ηt,

where ηt is a vector of composite disturbances and A is conformable. It follows that in order
to formulate rational expectations they can adopt linear forecast rules that depend on both
the stock of beginning of period debt, bt, and the primary surplus, st. Alternatively, if agents
formulated expectations with a set of rules that depend on end of period debt, bt+1, the same
(unique) rational expectations equilibrium would be achieved.

The bounded rationality assumption that we make in this paper, following in the footsteps
of a burgeoning adaptive learning literature, is that the agents in this economy make econo-
metric forecasts of payoff-relevant aggregate state variables whose perceived paths the agents
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take as given and beyond their control. Thus, when it comes to formulating expectations the
individuals and firms seek to optimize their forecasts given their information and abilities.
Our modeling strategy is to restrict that information and abilities of the agents so that they
favor parsimonious forecasting models. Imagining the individuals and firms in our economy
as an economic forecaster disciplined by rational expectations, they would formulate and es-
timate VAR forecasting models in bt, st and any serially correlated shocks. However, knowing
that model consistent forecasts involve knowing the government’s intertemporal constraint,
as well as the expectations of the other agents. Following the adaptive learning literature, it
is reasonable to replace rational expectations with subjective expectations formulated from
a well-specified forecasting model. In many environments, however, forecasters prefer par-
simonious models, face degrees of freedom limitations, and often use simpler models with a
restricted set of regressors.

Following this logic, the key assumption in this paper is that agents will formulate their
expectations from one of two restricted models, each of which includes a single fiscal variable:
st or bt. We could specify this parsimony in other ways, of course, but this approach is
particularly interesting. As Woodford (2013) shows in a particular case (see below), when
agents’ restricted variable includes st, but not bt, then Ricardian equivalence does not hold
in the restricted perceptions equilibrium. When the restricted variable includes bt and not
st, as we show below, this leads to a weak form of Ricardian equivalence which, importantly,
arises as a self-confirming equilibrium.

These two restricted forecasting models are natural ways to formalize endogenously (non-
)Ricardian beliefs. We do this as follows. All individuals and firms make a choice about
which fiscal variable to include in their forecasts. The coefficients of the restricted forecasting
models are derived from the optimal linear projection of the aggregate state variables onto
the restricted space of regressors, all of which is determined jointly in a restricted perceptions
equilibrium (RPE). In a misspecification equilibrium (ME), the distribution of the population
across the two possible forecasting models is endogenous and determined by a discrete choice
between models. If a misspecification equilibrium exists where this distribution is massed on
the bt-forecasting model then we say that there are endogenously Ricardian beliefs. On the
other hand, if a misspecification equilibrium exists where all agents use the st-forecasting
model then there are endogenously non-Ricardian beliefs. In the theoretical analysis, we
explore these equilibria including the possibility of heterogeneous expectations and multiple
equilibria. In the quantitative analysis, we explore whether real-time learning can lead
to fluctuations in the proportion of the population with non-Ricardian beliefs and assess
whether this can be a candidate explanation for post-war U.S. macroeconomic data.

Specifically, expectations are formed from one of the following forecasting models, some-
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times called perceived laws of motion (PLM):

PLMs : Zt = ψsst−1 + ηt ⇒ Es
tZt+1 = ψsst

PLMb : Zt = ψbbt−1 + ηt ⇒ Eb
tZt+1 = ψbbt,

where Z′t = (vt, p
∗
t , bt+1), ηt is a perceived noise, and the coefficient matrix, for k = s, b,

ψk =
(
ψk,Γk

)′
and ψk =

(
ψkv , ψ

k
p∗

)′. In a restricted perceptions equilibrium (RPE) the coefficients will satisfy
the least-squares orthogonality condition:

Exkt−1

(
Zt −ψkxkt−1

)
= 0

with xkt ∈ {st, bt}. Beliefs, parameterized by ψk, are derived from the optimal projection of
the aggregate variables Zt onto the restricted explanatory variable ψk. It follows that

ψk =
[
E
(
xkt−1

)2
]−1

EZtx
k
t−1 ≡ S

(
ψk
)
.

DEFINITION 2. A restricted perceptions equilibrium is a fixed point ψk
∗ = S

(
ψk
∗
)
.

We do not impose a priori which of the two PLM’s that individuals and firms use to
formulate expectations. Instead, we endow each agent with a discrete choice: they can
forecast with the st-model or the bt-model, and like the selection of model parameters,
they will do so to minimize their forecast errors. We adopt the rationally heterogeneous
expectations approach first pioneered by Brock and Hommes (1997), extended to stochastic
environments by Branch and Evans (2006b). Agents make a predictor selection in a random-
utility setting and in the limit of vanishingly small noise the agents will only select the
best-performing statistical models. This approach pins down the distribution of agents in
an equilibrium as follows.

Let n denote the fraction of agents who have selected model-s, leaving 1− n of the pop-
ulation forecasting with model-b.14 They can rank these choices by calculating the relative
mean square error (MSE):

EUk = −E
[
(Zt − Ek

t [Zk
t ])
]′ ×W × E

[
(Zt − Ek

t [Zk
t ])
]
, k = {s, b}, (17)

14For simplicity, we assume that households and firms are distributed across models identically. This is
a simplification that could be relaxed as follows. Instead, there could be a distribution nh of households
across models and a fraction nf of firms. One can imagine that the simplification arises in an environment
where households and managers of firms occupy the same residence and, thereby, share their expectations
each morning, say, over breakfast.
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where W is a weighting matrix.15 Consequently, we define relative predictor performance
F (n) : [0, 1]→ R as F (n) ≡ EU s − EU b.

Building on Brock and Hommes (1997), we assume that the distribution of agents across
the two forecasting models, n, is pinned down according to the multinomial logit (MNL)
map (see, e.g., Branch and Evans, 2011)

n =
1

2

{
tanh

[ω
2
F (n)

]
+ 1
}
≡ Tω(n),

where ω denotes the “intensity of choice”. The MNL map relates the fraction of agents
adopting model-s, n, is an increasing function of its relative forecast accuracy, measured by
the function F (n).

DEFINITION 3. A misspecification equilibrium is a fixed point n∗ = Tω (n∗).

The neoclassical case ω → ∞ warrants special attention as, in this case, the agents
only select the best-performing statistical models. The following proposition, an immediate
consequence of the continuity of Tω : [0, 1]→ [0, 1], details the range of possible equilibrium
outcomes.

PROPOSITION 1. Let N∗ (ω) = {n∗ | n∗ = Tω(n∗)} denote the set of misspecification
equilibria. As ω →∞, N∗ has one of the following properties:

1. If F (0) < 0 and F (1) < 0 then n∗ = 0 ∈ N∗.

2. If F (0) > 0 and F (1) > 0 then n∗ = 1 ∈ N∗.

3. If F (0) < 0 and F (1) > 0 then {0, n̂, 1} ⊂ N∗ , where n̂ ∈ (0, 1) is such that F (n̂) = 0.

4. If F (0) > 0 and F (1) < 0 then n∗ = n̂ ∈ N∗, where n̂ ∈ (0, 1) is such that F (n̂) = 0.

The first condition in Proposition 1 implies that the b-model forecasts best when all of
the agents use model-b or if they all use model-s; n∗ = 0 is evidently a misspecification
equilibrium in such cases. Conversely, when F (0) > 0 and F (1) > 0 then n∗ = 1 is a mis-
specification equilibrium. Outside of these polar cases, there is also the possibility of multiple
misspecification equilibria, n = 0, n̂, 1, for some 0 < n̂ < 1. This case will make repeated
appearances in various points of the remainder of this paper. As we will see, the n = 0
misspecification equilibrium can be thought of as a self-confirming equilibrium with weakly
Ricardian beliefs and the n = 1 will correspond to non-Ricardian beliefs.16 The multiple

15The main results do not depend heavily on the weights, so for simplicity we set W = I.
16For discussion of self-confirming equilibria see Sargent (1999). A self-confirming equilibrium is a stronger

concept than RPE as it requires that agents’ beliefs are correct in equilibrium, though they may be misspec-
ified off the equilibrium path.
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equilibria case is particularly interesting because it implies that a real-time learning version
of the model may feature endogenous regime-switching in and out of Ricardian equilibria.
A possibility we establish below and explore in the quantitative analysis.

Temporary equilibrium with heterogeneous beliefs.

Having introduced the temporary equilibrium equations and the nature of heterogeneous
beliefs, we turn now to the aggregation of the temporary equilibrium with heterogeneous
beliefs. Begin with the consumption function for a household of type i:

cit = (1− β)bit + c̄t − σπt + vit,

where

vit = Ei
t

∑
T≥t

βT−t {(1− β)(YT − τT )− [σ − (1− β)sb] (βiT − πT )− (1− β)c̄T} .

It is useful to define the recursion

v̂t = (1− β)(Yt − τt)− [σ − (1− β)sb] (βit − πt)− (1− β)c̄t + βv̂t+1.

Therefore, after simplying and imposing the government budget constraint, we have

vit = Ei
t v̂t = (1− β)(Yt − τt)− [σ − (1− β)sb] (βit − πt)− (1− β)c̄t + βEi

t v̂t+1.

Now we can derive the recursion for the aggregate vt ≡
∫
vitdi. With two different

expectations-types, a fraction n of “type-1” and 1− n of “type-2” It follows that

vt = nv1
t + (1− n)v2

t

= (1− β)vt + (1− β)β(bt+1 − bt)− βσ(it − πt) + βnE1
t v̂t+1 + (1− n)E2

t v̂t+1

= (1− β)(bt+1 − bt)− σ(it − πt) + Êtv̂t+1,

where Ê = nE1 + (1− n)E2 is an aggregate expectations operator. Notice, though, that

Êtv̂t+1 = Êt [(1− β)vt+1 + (1− β)β(bt+2 − bt+1)− βσ(it − πt) + βv̂t+2]

= Êtvt+1,

where the last equality depends on the law of iterated expectations holding at the aggregate
level. This needs to be a part of the assumptions on beliefs. There is, therefore, a natural
recursion for aggregate v:

vt = (1− β) (bt+1 − bt)− σ (it − πt) + Êtvt+1.

A similar argument shows that E1
t v̂t+1 = E1

t vt+1. So that we can write

vit = (1− β)vt + (1− β)β(bt+1 − bt)− βσ(it − πt) + βEi
tvt+1.
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DEFINITION 4. Given beliefs Ei
tvt+1, E

i
tp
∗i
t+1 a temporary equilibrium is a triple (bt+1, πt, yt)

and a policy (st, it) so that the bond and goods markets clear and the government budget con-
straint is satisfied. In particular, the following equations are satisfied

bt+1 = β−1 [bt − sbπt − st] + sbit

πt = (1− α)βÊtp
∗i
t+1 + κyt + ut

yt = gt − σit + (1− β)bt+1 + Êtvt+1,

where
vt = (1− β) (bt+1 − bt)− σ (it − πt) + Êtvt+1.

4 Theoretical results

4.1 A simple example

We begin with a special case, first exposited by Woodford (2013), which reduces the fiscal
variables, bt, st, to follow exogenous processes, πt = 0 for all t, and households have a simple
permanent income problem to solve. The case under consideration here sets φy = sb = κ = 0
and α = 1. We further shut down all of the exogenous disturbances except for the fiscal
shock zt. In the next subsection, we relax all of these parameter restrictions except sb = 0.
The case where sb > 0 requires numerical analysis.

4.1.1 Restricted perceptions equilibria

We begin by characterizing the restricted perceptions equilibria with an exogenous distri-
bution n. In the sequel, we endogenize n within a misspecification equilibrium. In this
special case of the model, households need only forecast the continuation variable vt+1. Con-
sequently, agents’ forecasts are projections from one of the following two regression models[

vt
bt

]
=

[
ψs

Γsb

]
st−1 + ηst ⇒

[
E1
t vt+1

E1
t bt+1

]
=

[
ψs

Γsb

]
st (18)[

vt
bt

]
=

[
ψb

Γbb

]
bt−1 + ηbt ⇒

[
E2
t vt+1

E2
t bt+1

]
=

[
ψb

Γbb

]
bt. (19)

In a restricted perceptions equilibrium, the coefficients in (18) and (19) are optimal, i.e.,
they satisfy the least-squares orthogonality conditions

E[stη
s
t+1] = 0 (20)

E[btη
b
t+1] = 0. (21)
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A brief remark about a timing assumption. Here, we follow Woodford (2013), in assuming
that agents project the state variables onto the lagged regressors. We could alternatively
assume that they regress the state onto contemporaneous regressors and it would not greatly
impact the equilibrium results. However, the timing convention followed here has two bene-
fits. First, it simplifies many of the analytic expressions. Second, in the quantitative analysis
below, we implement a real-time learning version of the model and the timing avoids a po-
tential multicollinearity problem.

Weak Ricardian equivalence.

We first show that when n = 0, i.e., all agents forecast with the b-model, then Ricardian
Equivalence holds. This is even though we do not impose a priori that beliefs are Ricardian,
but with this PLM agents will hold Ricardian beliefs along an equilibrium path, even though
their beliefs are misspecified out of equilibrium. Thus, Ricardian equivalence here is a self-
confirming equilibrium in the sense of Sargent (1999), Cho et al. (2002), and Williams (2018).

With homogeneous expectations, in this simple case, the key model equations are:

bt+1 = β−1 (bt − st)
yt = vt + (1− β)bt

vt = (1− β) (bt+1 − bt) + Ei
tvt+1

st = φbbt + wt.

With n = 0, E2
t vt+1 = ψbbt, and the actual law of motion is

vt = (1− β) (bt+1 − bt) + ψbbt

= (1− β)β−1 (bt − st) + ψbbt.

One can find ψb,Γb by solving the pair of orthogonality conditions

E
(
bt+1 − Γbbt

)
bt = 0

E
(
vt+1 − ψbbt

)
bt = 0.

Straightforward algebra leads to

Γb =
E[bt+1bt]

E[b2
t ]

= β−1(1− φb).

It follows that

ψb =
Evt+1st
Eb2

t

=
[
(β−1 − 1)(1− β − φb) + ψb

]
Γbb

⇔ ψb =
(1− β)(1− β − φb)Γb

β(1− Γb)
= −β−1(1− β)(1− φb). (22)
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The following result is a direct consequence.

PROPOSITION 2. In the special parametric case, if all agents form expectations from the
b-model (19), then there exists a unique restricted perceptions equilibrium with

yt = −(β−1 − 1)zt (23)
ψb = −β−1(1− β)(1− φb). (24)

All proofs are in the Appendix. Proposition 2 provides a weak Ricardian equivalence
result: by forecasting with the most recently observed bt instead of bt+1, then innovations to
the surplus only have a contemporaneous impact on output. Thus, only unexpected fiscal
innovations matter for the real economy. This will differ from the 0 < n ≤ 1 cases where
the beliefs of the agents do not just so happen to coincide approximately to the rational
expectations equilibrium. In these cases, Ricardian beliefs do not arise endogenously. This
first polar case of n = 0 shows that Ricardian beliefs can arise endogenously and then
Ricardian equivalence holds, as with rational expectations, under a passive fiscal/active
monetary policy regime. It is important to note here that Ricardian equivalence is stronger
than an RPE, it arises as part of a self-confirming equilibrium where beliefs are consistent
with the government’s intertemporal budget constraint on, but not off, the equilibrium path.

Endogenously non-Ricardian beliefs.

Now consider the case n = 1, where all households forecast with the s-model. This is
exactly the example presented in Woodford (2013, Section 4.1.2.). Using the same set of
equilibrium equations as the previous example, it follows that expectations are E1

t vt+1 = ψsst,
and the actual law of motion is

vt = (1− β) (bt+1 − bt) + ψsst

= (1− β)β−1 (bt − st) + ψsst.

Solving the corresponding least-squares orthogonality conditions pin down the RPE values
for the belief coefficients:

Γs ≡ E[bt+1st]

E[s2
t ]

=
−β−1(1− β2 − φb)

(1− β2 − 2φb)
, (25)

and,

ψs =
[
(β−1 − 1)(1− β − φb) + ψsφb

]
Γs (26)

= −β
−1(1− β)(1− β2 − φb)

(β + β2 + φb)
.

Notice, in particular, that the expression for ψs implies that ψs < β−1 − 1.
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PROPOSITION 3. In the special parametric case of the model, if agents form expectations
from the s-model (18), then there exists a unique restricted perceptions equilibrium with

yt =

[
(1− β)(1 + β − φb)
β(1 + β) + φb

]
bt −

[
β−1 − β

β (1 + β) + φb

]
zt (27)

ψs = −β
−1(1− β)(1− β2 − φb)

(β + β2 + φb)
< β−1 − 1. (28)

Proposition 3 replicates the result in Woodford (2013, Section 4.1.2.). The solution for
yt, (27), shows that a fiscal policy shock, zt, has both transitory and persistent real effects,
as yt depends on both bt and zt. Below, we dive deeper into comparing and contrasting the
effect of fiscal shocks across equilibria.

The failure of Ricardian equivalence with the s-model is due to the forecast errors by
the agents using the s-forecasting model. It is important to stress, however, that within the
context of their restricted model the agents cannot detect their misspecification while the
economy is in a restricted perceptions equilibrium. This finding is related to Eusepi and
Preston (2018a), who find the possible failure of Ricardian Equivalence in an economy that
is comparable but with a different theory of expectation formation. In particular, the agents
in Eusepi and Preston (2018a) are learning about the long-run aspects of monetary and
fiscal policy and the failure of Ricardian equivalence arises because of temporary variations
in agents’ econometric learning rule. In this paper, the failure of Ricardian equivalence can
arise as an equilibrium outcome. This point is more salient when we consider the misspec-
ification equilibrium refinement and show that, under certain conditions, agents will prefer
the non-Ricardian to the Ricardian model.

Heterogeneous beliefs.

The above results are based on homogeneous expectations with (potentially) misspecified
PLMs (18) or (19). Next we introduce extrinsic heterogeneity in expectations with aggregate
expectations derived from a weighted average of the two forecast models (18) and (19).
Assume now that a fraction n ∈ [0, 1] of agents use (18) and 1 − n use (19). Our objective
is to show that, depending on the distribution n, (non-)Ricardian equilibria can emerge.

We have

Êt[vt+1] = nEs
t vt+1 + (1− n)Eb

t vt+1 = nψsst + (1− n)ψbbt,

where the aggregate expectations operator Ê = nEs + (1 − n)Eb. We have the following
result.

22



PROPOSITION 4. In the special parametric case of the model, if a fraction n of the agents
forms expectations from the s- model (18) and 1 − n agents form expectations from the b-
model (19), then for each n ∈ [0, 1] there exists a unique restricted perceptions equilibrium
with

yt =
[
φbnψ

s(n) + (1− n)ψb(n) +
(
β−1 − 1

)
(1− φb)

]
bt −

[
(β−1 − 1)− nψs(n)

]
zt

where

ψs(n) =
β−1(1− β)(1− β2 − φb)

[1− β2 − n(1 + β − φb)− 2φb]

ψb(n) =
−β−1(1− β)(1− β2 − 2φb)(1− φb)

[1− β2 − n(1 + β − φb)− 2φb]
.

This proposition demonstrates how fragile Ricardian equivalence can be, especially in
a restricted perceptions environment. Even though all agents have misspecified forecasting
models, when n = 0 then Ricardian equivalence arises as a self-confirming equilibrium. But,
for any n > 0, even n arbitrarily close to zero, then neither type of agent will hold Ricardian
beliefs.

4.1.2 Misspecification equilibrium

The restricted perceptions equilibrium analysis above shows that Ricardian equivalence de-
pends fundamentally on n the distribution of households across the two forecasting models.
It is important to pin down the value n endogenously as an equilibrium object. We ac-
complish this by characterizing the set of misspecification equilibria. The following result
provides necessary and sufficient conditions for the existence of multiple misspecification
equilibria.

THEOREM 1. Consider the special parametric case of the model. Let ω →∞ and β > 2/3.
There exists multiple misspecification equilibria, n∗ ∈ {0, n̂, 1}, if and only if

φ (β) < φb < φ̄ (β) ,

where

φ (β) = max

{
1− β, 1

4

(
4− 2β − 3β2

)}
φ̄ (β) =

1

4

[(
2− 3β − 2β2

)
+
√

4 + 4β + 5β2 − 4β3
]
.

We can similarly characterize the necessary and sufficient conditions for unique (non-
)Ricardian equilibria.
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COROLLARY 1. Let ω →∞. The following results hold.

i. A unique misspecification equilibrium n∗ = 1 exists if and only if

1− β < φb ≤
1

4

(
4− 2β − 3β2

)
.

ii. A unique misspecification equilibrium n∗ = 0 exists if and only if

φ̄ (β) < φb < 1.

REMARK. The existence of the unique non-Ricardian equilibrium, n∗ = 1, requires that
β < 2/3⇔ 1−β < 1

4
(4− 2β − 3β2). Thus, the special case non-Ricardian equilibria is likely

to arise in empirically plausible models in the form of multiple equilibria.

Figure 1 illustrates the results in Theorem 1 and Corollary 1. In the graph, are the
combinations of (β, φb) consistent with multiple or unique equilibria. The large unshaded
area in the lower half of the plot corresponds to active fiscal policy, i.e., (1 − β) < φb. The
restriction to Ricardian policy rules out equilibria in this region. Then, moving outward from
the origin, the shaded area with a dashed-boundary consists of the pairs of (β, φb) consistent
with a unique non-Ricardian equilibrium. The next shaded area, with grid lines, corresponds
to the existence of multiple equilibria. Finally, the outermost shaded area is where a self-
confirming Ricardian equilibrium, n∗ = 0, is the unique misspecification equilibrium.

Theorem 1 is the main theoretical result of the paper: even though fiscal policy is pas-
sive, non-Ricardian beliefs can emerge endogenously. For φb within a certain range

[
φ, φ̄

]
then the non-Ricardian outcome can be sustained in a misspecification equilibrium. Most
interestingly, for these fiscal policy rules there exists multiple misspecification equilibria with
existence also of a Ricardian equilibrium n∗ = 0. As we discuss below the case of multi-
ple equilibria leads to interesting model dynamics that offer an alternative interpretation
to regime-switching non-Ricardian policy effects. As an example, Figure 2 plots the T-map
Tω(n) and the relative predictor fitness function F (n) when β = 0.99, φb = 0.015, and σz = 1.
In the bottom plot, it is evident that F (0) < 0 and F (1) > 0, which implies the existence of
both Ricardian and non-Ricardian equilibria, respectively. The top panel plots the T-map
for various values of n when ω →∞. This figure clearly indicates the three misspecification
equilibria. In the quantitative analysis, the interior misspecification equilibrium is unstable,
and so the learning dynamics can feature recurrent switching between the basins of attraction
of the two (non-)Ricardian equilibria.

Why would individuals ever prefer the non-Ricardian forecasting model? An closer ex-
amination of F (n) provides the intuition. The predictor fitness measures, in the simple case,
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Figure 1: Equilibrium existence
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Thus, a given model’s predictor fitness depends, essentially, on three components. First, the
distance between the belief parameter and the corresponding coefficient in the actual law of
motion. Second, how volatile the missing component is from their forecasting model. Third,
a term that is best interpreted as the omitted variable bias component of the prediction
error. These distances are all weighted by the corresponding equilibrium covariances of the
state variables.

After calculating the differences between these predictor fitness functions leads to

F (n) =
[
ψb
(
ψb − 2µv1

)
− ψs (ψs − 2µv2)φ2

b

]
Eb2

t+2
[
µv1ψ

s − µv2ψ
b
]
Ebtst−ψs [ψs − 2µv2]σ2

z .

The fraction of agents who use the surplus-model then depends a balancing of how well
the surplus model captures the serial correlation of the debt process and the additional
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Figure 2: Multiple (non-)Ricardian equilibria in the special case.

predictive power from the surplus model conditioning directly on the zt innovation. For
small values of φb, the surplus- and debt-models are weakly correlated and so n∗ = 1 can
emerge as the unique equilibrium as it best captures the contemporaneous zt innovations.
Such an equilibrium is self-fulfilling in the sense that with n = 1 the indirect effect of zt is
strengthened through the self-referential features of the model. For larger values of φb the
agents will always mass onto the Ricardian predictor as the surplus and debt models become
more correlated the potential forecasting advantage of the surplus model is reduced. Finally,
when φb takes middling values between these two extremes, then either (non-)Ricardian
equilibrium can emerge. Now the debt-model is sufficiently correlated with the surplus-
model that an agent will prefer it if n = 0. Similarly, the debt and surplus-models are not
too closely correlated so that when n = 1, the agents will prefer the surplus model that
captures the contemporaneous innovation in its forecast.
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To sum up: for empirically plausible parameterizations of the special case, a Ricardian
self-confirming equilibrium is always supported as a misspecification equilibrium. For a
range of fiscal policy parameters there can also exist a non-Ricardian equilibrium. The non-
Ricardian equilibrium is the unique outcome for φb sufficiently small and close to the border
between active and passive fiscal policy.

4.1.3 Building intuition

We now develop intuition about the economic implications by comparing and contrasting
the n = 0 and n = 1 RPE. These polar cases feature, of course, one case (n = 0) where
weak Ricardian equivalence holds and the other (n = 1) where Ricardian equivalence does
not hold.

Revisit the (non-)Ricardian results in Propositions 2 and 3. We can compare the re-
stricted perceptions equilibrium paths for the state variables yt, bt+1 as well as expectations
about future debt Ek

t bt+1, k = {s, b}. Figure 3 plots the impulse response functions to a
one-percent innovation in zt at t = 1 in both the n = 0 and n = 1 RPE’s. For illustrative
purposes, the figure sets β = 0.99, φb = 0.05. Although, in this simple case there is a unique
misspecification equilibrium at n = 0, this comparison is nevertheless informative.

Figure 3: Impulse responses in the special case.

The impact of an innovation z1 = 1 produces a (slightly) larger, but purely transitory,
contractionary effect on yt in the Ricardian belief case n = 0, this is the weak Ricardian
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equivalence result. The n = 1 initial impact is slightly smaller, however, it has a strong
persistent component. This stark example is informative because, as the NE-panel illustrates,
the paths for bt+1 are the same across the two equilibria: the very restrictive case under
consideration has government debt following a stationary exogenous process. The bottom
two panels plot the expected paths for bonds in each of the two equilibria, i.e., Ek

t bt+1, k =
{s, b}. The SE-panel is for the Ricardian case and, as the figure shows, the Ricardian
beliefs track the path of debt correctly. The SW-panel, though, shows remarkably different
forecasts for debt. The non-Ricardian agents correctly forecast that debt decreases on impact,
however, since the impact is small on the surplus (with φb = 0.05), and their forecasting
coefficient Γs < 0, a lower debt on impact implies a decrease in the surplus in the next
period (s2 = φbb1) and the expected path of debt increases and then slowly transitions back
to its steady-state value.

The distinction between Ricardian and non-Ricardian equivalence in this restricted per-
ceptions environment comes down to the difference in expectations across the two models.
We gain further intuition by computing consumption along the impulse path. Denote the
consumption function for this simplified case by cit(n). Quick computations lead to

cit(n) = (1− β)bit + (1− β)(yt − τt) + βÊi
tv
i
t+1.

In the case n = 0, one can use PLM (19), (24), (23) and (7) to obtain

cbt(0) = (1− β)st − (1− β)τt − (β−1 − 1)zt. (29)

Equation (29) illustrates both the crowding out of private consumption by government spend-
ing and weak Ricardian equivalence.17 The effect of tax shocks on consumption for these
agents is the purely transitory unobserved component (β−1−1)zt. In contrast, the consump-
tion function for a zero-mass agent who uses the s-model (18) while the aggregate variables
are generated by the n = 0 RPE is

cst(0) = (1− β)

[
bt − τt +

(1− β2 − φb)
(1− β2 − 2φb)

st − (β−1 − 1)zt

]
.

This (zero-mass) agent features a weaker crowding out effect, there is a positive wealth effect
of government debt, and predictable tax movements have impact on consumption.

We elaborate on the intuition via the diametrically opposite RPE with n = 1. By
combining the s-model (18), (28), (27) and (7) we obtain

cst(1) =

[
1− β2 − (1− β)φb

β + β2 + φb

]
bt − (1− β)τt + (1− β)st +

[
−β−1 + β

β + β2 + φb

]
zt.

17Given that st ≡ τt −Gt, one can rewrite (29) as cbt = −(1− β)Gt − (β−1 − 1)zt.
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Similarly, the consumption function of a zero-mass agent who uses the b-model (19) within
the n = 1 RPE is

cbt(1) =
(1− β)

(β + β2 + φb)

[
1 + β − β2(1− φb)φb − φ2

b(2φb − 3)
]
bt +

[
1− β2

β + β2 + φb

]
st +

[
−β−1 + β

β + β2 + φb

]
zt.

It follows that Ricardian equivalence fails in an n = 1 RPE both for households with the
s-model as well as the b-model.

4.1.4 Connection to rational expectations

An obvious objection is that the results presented hinge on the restricted perceptions restric-
tion to forecasting models with only a single fiscal variable: what happens if the agents have
a forecasting model with both bt and st which nests the rational expectations equilibrium?

In this subsection, we address this concern through the lens of econometric learning, e.g.,
Evans and Honkapohja (2001), and relax the parsimony assumption by assuming that agents
form their expectations via a correctly specified model

vt = ψsst + ψbbt.

We continue to maintain the imperfect knowledge assumptions, including not a priori im-
posing Ricardian beliefs, and further assume that the belief coefficients ψs, ψb are real-time
estimates from a constant gain learning model, a form of discounted least-squares. With this
perceived law of motion, the actual law of motion implied by these beliefs can be written as

vt = S
(
ψs, ψb

)′ [ st
bt

]
−
(
1/
(
1 + σ−1φ−1

y

))
gt,

where

S
(
ψs, ψb

)
=

1

1 + σφy

[
−β−1

(
ψsφb + ψb + 1− β

)
β−1

(
ψsφb + ψb

)
+ (1− β) (β−1 − 1)− σφy (1− β)

]
.

The S-map has the usual interpretation: given a perceived law of motion with coefficients
(ψsψb)′ the corresponding coefficients in the actual law of motion implied by these beliefs
are S

(
ψs, ψb

)
. A rational expectations equilibrium is a fixed point of the “S-map”, i.e.,

Θ∗ = S(Θ∗),Θ′ = (ψs, ψb).

We can solve for the “mean dynamics” associated to the constant gain learning dynamics
as a (small gain) approximation to the expected transitional learning dynamics. Adapting
the stochastic recursive approximation results in Evans and Honkapohja (2001) it is possible
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to show that, across sequences of increasingly smaller gain parameters, the learning dynam-
ics weakly converge to the expected path for Θ given by the following system of ordinary
differential equations (O.D.E.’s)

Θ̇ = R−1M (S (Θ)−Θ)

Ṙ = M −R,

where
M = E

[
st
bt

] [
st bt

]
.

The mean dynamics are the solution path, for a given initial condition Θ(0), to this system
of O.D.E.’s.

The mean dynamics are useful for understanding the qualitative nature of learning dy-
namics. In particular, standard results in the literature show that constant gain learning
dynamics are distributed asymptotically normal with a mean equal to the rational expecta-
tions equilibrium values and a variance that is proportional to the size of the gain parameter.
Thus, over time one can expect with high probability to see coefficient estimates Θ that fluc-
tuate around Θ∗. The response of Θ to a particular sequence of unlikely shocks is described
by the “escape dynamics”, which provide the “most likely unlikely” path away from the ratio-
nal expectations equilibrium, and then the mean dynamics describe the transition path back
to the equilibrium.18 The escape dynamics, therefore, can be thought of as re-initializing
the mean dynamics. Thus, we can use different starting values for the mean-dynamics to
characterize the type of learning paths that we might actually observe.

We use these insights to show that the learning dynamics in the case of fully specified
perceived laws of motion will be drawn, for a finite stretch of time, towards the n = 1
restricted perceptions equilibrium. The mean dynamics are derived from a continuous time
approximation of the real-time learning dynamics and the application of a law of large
numbers, however, it is straightforward to convert the notional time in the O.D.E. to actual
discrete time according to t = γ−1τ γ, so that a small constant gain, γ, corresponds to a long
stretch of real time.

Figure 4 plots the mean dynamics for a particular illustrative parameterization: φy = 0.5,
φb = 0.9, σ = 2, σ2

z = 1.19 We then choose initial values for the ψs, ψb that are both above
their rational expectations equilibrium values. The mean dynamics O.D.E. is then solved
and Figure 4 plots the expected learning path (ψs shown). The experiment is to imagine an
“escape” that has driven beliefs above their rational expectations equilibrium values and use

18See Williams (2018) for details and a comprehensive set of results and toolkit on escape dynamics in
constant gain learning models.

19For expositional ease, we present an example where the RPE and REE values are starkly far apart.
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the solution to the mean dynamics O.D.E. to trace out how the economy is most likely to
respond.

Figure 4: Expected learning dynamics for a correctly specified forecast model
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The figure plots (solid line) the expected transition path for ψs while the the dashed
line is the value in an n = 1 restricted perceptions equilibrium, that is the value for ψs and
ψb that would arise in an n = 1 RPE. The learning dynamics are expected to eventually
converge to the rational expectations equilibrium. However, with a small constant gain, that
speed of convergence can be quite slow. Interestingly, along the transition path for ψs, the
beliefs hover for a finite stretch of time at its n = 1 RPE. This coincides with a path for ψb
(not shown) that is also drifting down towards its RPE value. As the path for ψb continues
to transition towards its REE value, this helps draws ψs away from its RPE value and back
towards the rational expectations equilibrium.

Thus, we conclude from Figure 4 that the RPE is both theoretically appealing and re-
alistic as we can expect recurrent escapes near the n = 1 RPE even when all agents in the
economy form forecasts from a bivariate model that nests the rational expectations equilib-
rium. Moreover, for small gains γ, the economy will persist near the RPE for long stretches
of time. Even without the restricted perceptions restriction, since the fully specified model
nests the RPE which acts as an escape point and impacts the learning dynamics even in
the standard set up. The restricted perceptions equilibrium, then, is a reasonable approxi-
mation to an even more sophisticated forecasting model for the agents. These dynamics are
reminiscent of Cho and Kasa (2017).

The mean dynamics in Figure 4 also help to better understand the connection between
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this paper and Eusepi and Preston (2018a). In their model, beliefs nest the rational ex-
pectations equilibrium however the agents attempt to learn about the long-run stances of
fiscal and monetary policy. They show how learning dynamics can generate fluctuations
with non-Ricardian effects. These non-Ricardian effects are strengthened in economies with
a high steady state debt/output ratio. The theory of expectation formation here emphasizes
restricted perceptions which require the agents to estimate the relevant auto- and cross-
covariances which in combination gives scope for escape dynamics. The mean dynamics re-
sults suggest loosely that the convincing non-Ricardian effects in Eusepi and Preston (2018a)
can also be impacted by the existence of a non-Ricardian restricted perceptions equilibrium.
Therefore, our theoretical and quantitative analysis is complementary to their paper, while
providing also an equilibrium explanation for the phenomenon of non-Ricardian beliefs.

4.2 Further results

The results in the special case are useful for clear intuition and analytic tractability. While
analytic results are not possible when sb > 0, we use numerical analysis to show that the
insights from the special case carry over but also with more equilibrium possibilities. In this
subsection generalize the results to all small σ parameterizations when sb = 0.

The key equations are now:

bt+1 = β−1 (bt − st)
yt = vt − σπt + (1− β)bt + gt

vt = (1− β) (bt+1 − bt)− σ (it − πt) + nψsv(n)st + (1− n)ψbv(n)bt

πt = κyt + (1− α)βnψsp∗(n)st + (1− n)ψbp∗bt + ut

it = φππt + wt

st = φbbt + zt,

where φπ > 1 and 1− β < φb < 1, i.e., active monetary/passive fiscal policy. We are able to
prove the following result in the case of small σ.

PROPOSITION 5. For σ sufficiently small, there exists a φ̃(β) such that multiple mis-
specification equilibria exist provided that

1− β < φb < φ̃(β).

This generalizes the previous results to a New Keynesian model and monetary policy that
adheres to a Taylor-type rule. Notice from the proposition that endogenously non-Ricardian
beliefs and, conversely, self-confirming Ricardian beliefs, depend on the extent to which the
fiscal policy rule is passive and does not depend directly on the monetary policy coefficient
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(φπ). However, we show that φπ can have a qualitative and quantitative impact on the
dynamics when sb > 0, a case that we consider numerically in the remainder of the paper.

4.3 Multiple equilibria

When sb > 0 then there exist parameterizations that cover all of the equilibrium possibilities
in Proposition 1. In the quantitative analysis we are particularly interested in the possibility
of multiple equilibria, i.e., cases where both n∗ = 0 and n∗ = 1 are theoretical possibilities.
To illustrate, Figure 5 plots the T-map for the numerical parameterization in Table 1 from
the quantitative analysis in the subsequent section.20

Figure 5: Illustration of multiple equilibria with calibration as in Table 1 and ω →.
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Recall that a misspecification equilibrium is a fixed point of the T-map: n∗ = Tω (n∗).
Figure 5 illustrates the possibility of 3 equilibrium values for n∗. The polar cases n∗ =
0, n∗ = 1 and an interior equilibrium n̂ which features F (n̂) = 0. Since the slope of the
interior equilibrium is greater than one, the (non-)Ricardian equilibria are the ones that will
be stable under learning. We can, therefore, anticipate real-time learning dynamics that
endogenously switch regimes by hopping between the basins of attractions for the (non-
)Ricardian equilibria. These sorts of dynamics play a key part of the quantitative analysis.

20The T-map here continues to assume iid innovations, while the quantitative analysis includes serially
correlated shocks. As a result, the multiple equilibria here require a larger value of κ = 0.03.

33



5 Quantitative results

Having proposed a theory of endogenously (non-)Ricardian beliefs, we now turn to a quan-
titative analysis to see whether U.S. post-war macroeconomic data are consistent with non-
Ricardian beliefs. We first demonstrate that a New Keynesian model with active monetary
policy, passive fiscal policy, and endogenously (non-)Ricardian beliefs describe well U.S. data
on output gap, inflation, and the primary real-surplus. Our estimates of the latent state dy-
namics suggest a sizable fraction of individuals and firms hold non-Ricardian expectations,
with the fraction increasing over time. Counterfactual analysis explores the implications of
alternative monetary policies.

5.1 Theory

This section generalizes the theoretical model while maintaining the previous assumptions
that monetary policy is active and fiscal policy is passive. To explain the data we also follow
Eusepi and Preston (2018a) in replacing the fixed RPE parameters with a constant gain
learning process that assumes agents estimate model coefficients and the relative forecast
fitness, in real-time: after new data are realized, agents estimate the parameters of their
model using discounted least-squares, update their estimate of the relative forecast accuracy
of the two models, and then select a forecasting model. We also expand to a richer set of
exogenous, serially correlated disturbances.

The actual laws of motion are given by,

bt+1 = β−1 (bt − sbπt − st) + sbit

yt = vt − σπt + gt + (1− β)bt

vt = (1− β) (bt+1 − bt)− σ (it − πt) + Êtvt+1

πt = κyt + (1− α)βÊtp
∗
t+1 + ut

it = φππt + φyyt + wt

st = φbbt + zt,

where, for a variable x, Êtx = nt−1E
s
t x+ (1− nt−1)Eb

tx. The exogenous shocks are uncorre-
lated, stationary AR(1) processes:

gt = ρggt−1 + εgt

ut = ρuut−1 + εut

wt = ρwwt−1 + εwt

zt = ρzzt−1 + εzt
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with εjt ∼ iid(0, σ2
j ) and Eεjε′j = 0, j′ 6= j. Extending the two restricted forecasting models

to this more general environment, we can write

Es
t vt+1 =

(
ψsv,t−1

)′

st
gt
ut
wt
zt

 , Eb
t vt+1 =

(
ψbv,t−1

)′

bt
gt
ut
wt
zt



Es
t p
∗
t+1 =

(
ψsp∗,t−1

)′

st
gt
ut
wt
zt

 , Eb
t p
∗
t+1 =

(
ψsp∗,t−1

)′

bt
gt
ut
wt
zt

 .
The coefficients ψkj,t, j = v, p∗, k = s, b are updated with constant gain least-squares:

ψkj,t = ψkj,t−1 + γ1R
−1
k,tXk,t−1

(
xk,t −

(
ψkj,t−1

)′
Xk,t−1

)
Rk,t = Rk,t−1 + γ1

(
Xk,t−1X

′
k,t−1 −Rk,t−1

)
,

where xk,t ∈ {vt, p∗t},X ′s,t−1 = (st−1, gt−1, ut−1, wt−1, zt−1) , X ′b,t−1 = (bt−1, gt−1, ut−1, wt−1, zt−1),
and Rk,t is the sample estimate of the regressor covariance matrix EXk,tX

′
k,t. The parameter

0 < γ1 < 1 is the “constant gain” as it governs the responsiveness of parameter updating to
recent forecast errors. The discounted least-squares places a geometrically declining weight,
(1−γ1)t on recent data observations. The timing implicit in these learning rules is consistent
with the previous analysis: expectations are formed at the beginning of t using coefficient
estimates based on all observable information through t− 1.

A similar recursive estimator for the distribution of agents across forecasting models, n,
can be derived. Re-writing (17) as

EUk
t = −MSEk

v,t −MSEk
p∗,t

where
MSEk

k,t = MSEk
k,t−1 + γ2

[(
xk,t −

(
ψkj,t−1

)′
Xk,t

)2

−MSEk
k,t−1

]
.

Note we allow for the possibility that gain parameters γ1 6= γ2. A forecaster that is relatively
more uncertain about the forecasting accuracies of the two models than they are about their
model coefficient estimates would set γ2 > γ1.21 And, the MNL law of motion delivers the
real-time distribution of endogenously (non-)Ricardian beliefs:

nt =
1

2

{
tanh

[ω
2

(
EU s

t − EU b
t

)]
+ 1
}
.

21See Branch and Evans (2006a) for discussion and evidence from the Survey of Professional Forecasters.
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5.2 Methodology

The Extended Kalman Filter (EKF) generates the data-implied one-step ahead predicted
paths for the endogenous latent state variables. After plugging in the policy rules, expecta-
tions, and recursive updating equations for the learning rules, the model can be written in
non-linear state space form:

Xt = g (Xt−1,Θ) +Q(Xt−1,Θ)vt

Yt = f(Xt, ηt),

where the state vector

X ′t =
(
bt+1, gt, ut, wt, zt, nt,MSEst,MSEbt, vec (ψst ) , vec

(
ψbt
)
, vec (Rst) , vec (Rbt) , bt

)
,

vec (·) is the vectorization operator, the observation variables are

Y ′t = (yt, πt, st, bt+1) ,

and the parameter vector

Θ′ = (κ, α, φπ, φy, φb, ρg, ρu, ρw, ρz, σg, σu, σw, σz, ω, γ1, γ2) .

The measurement and state disturbances are ηt, vt respectively. Our sample for the observed
variables is 1955.1-2007.3.22 We measure yt as the log difference between output and the
CBO’s measure of potential output. We measure πt from the PCE index. We compute bt
and st as the debt-GDP ratio and primary surplus-GDP ratio, respectively. All variables are
HP-filtered and detrended.

We estimate the (one step ahead) predicted state path E (Xt+1|Yt,Θ). Since the state
transition and measurement equations are highly non-linear in the belief state variables,
an approximation of the non-linear state-space model is necessary. The Extended Kalman
Filter (EKF) mimics the linear Kalman Filter by naturally extending the prediction steps
to the non-linear state space. The non-linearity creates a difficulty for calculating the co-
variances of the state and measurement variables that the EKF overcomes with a first-order
approximation to these moments.

One could use Bayesian methods to uncover posterior estimates of the structural pa-
rameters of interest Θ by using the Extended Kalman Filter to approximate the likelihood
function. However, since our modeling environment is closely related to Eusepi and Preston
(2018a), who use Bayesian techniques to estimate the posterior distribution of a model where
adaptive learning generates temporary, endogenous departures from Ricardian equivalence,
we follow this seminal work and parameterize the model according to the mean and 95%
probability bounds on the posterior distribution: see Table 1. As we will see, this benchmark
parameterization yields state dynamics consistent with U.S. data.

22We end the sample before the ZLB episode as incorporating an effective lower bound on interest rates
is beyond the scope of the present paper, but is the topic of future research.
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Table 1: Quantitative parameterization

Parameter Posterior Mean
β 0.99
σ 1/7.7147
sb 0.3
κ 0.003
α 0.738
φπ 1.623
φy 0.094
φb 0.047
ρg 0.931
ρu 0.870
ρw 0.857
ρz 0.073
σg 0.526
σu 0.186
σw 0.197
σz 2.088
ω 1
γ1 0.005
γ2 0.039
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A few comments are in order. We initially normalize the ‘intensity of choice’ parameter
ω = 1. In the counterfactual experiments, we also consider the case where ω is large, in
line with the misspecification equilibrium results presented earlier. A value of ω = 1 in this
model can be interpreted as a low “intensity of choice” as the T-map Tω=1(n) is close to
linear. The value of γ2 is in line with Eusepi and Preston (2018a), however γ1 is on the
smaller side of what is often estimated in the literature. We fixed the value γ1 = 0.005 to be
sure that the learning dynamics remain bounded. Alternatively, we could have imposed a
“projection facility” that keeps the values of the ψ’s bounded in an appropriate neighborhood,
and then considered values where γ1 = γ2. Larger values of γ1 lead to more volatile belief
parameter updating and more frequent switching between misspecified equilibria, when they
exist. Thus, the relatively small value of γ1 = 0.005 is a conservative choice. The small
estimated values for the parameters φb and ρz also work against the theory of endogenously
non-Ricardian beliefs: larger values of both φb and ρz increase the set of structural parameters
consistent with multiple misspecification equilibria. While the estimated parameters for the
Taylor rule are in line with estimates in the literature, our main counterfactuals involve how
different values for φπ, φy impact the results on (non-)Ricardian beliefs and macroeconomic
outcomes.

5.3 Benchmark results

To begin, Figure 6 plots both the model-predicted state dynamics and actual U.S. data.
We use the Extended Kalman Filter to compute (smoothed) E (Xt+1|Yt,Θ) for the period
1960-2007.3, and initialized the model over the period 1955-1960 as follows. For period
1955.1 we assume that the economy is initially at the misspecification equilibrium n ≈ 0.5
and compute the corresponding RPE. The variables are all initialized at this RPE and then
we simulate the state dynamics, including the endogenous beliefs and nt, over the next 20
quarters. Using those initial values, we run the Extended Kalman Filter to estimate the
predicted path, which is plotted in the panels of Figure 6.

Moving clockwise from the NW panel, the solid lines are the model-predicted paths for
the output gap, inflation, the primary government surplus, and the fraction of non-Ricardian
agents. Figure 6 demonstrates that the fraction of non-Ricardian agents, in the benchmark
parameterization, is below 0.50 for most of the sample, though throughout the fraction of
non-Ricardian agents is never below 0.41. There are several notable periods of an evolving
extent of non-Ricardian beliefs. In the first half of the 1960’s, the fraction of non-Ricardian
agents is decreasing, but in the latter half of the decade, there is an approximately 3% increase
in the percentage of non-Ricardian agents. Throughout the 1970’s and 1980’s, the model
predicts a steadily increasing fraction of individuals with non-Ricardian beliefs to nearly 50%
in the second half of the 1990’s. Then in the early 2000’s there is another increase to where
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Figure 6: Predicted State Dynamics. Solid lines are model predicted state variables. Dashed
lines are corresponding U.S. data.
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n > 0.5 and then holding roughly that value for the rest of the sample. These switches are
bounded, in part, because of the intensity of choice normalization. The switches are also in
line with stretches of time where the surplus process encounters a sequence of shocks in the
same direction, i.e., a “most likely unlikely sequence.”23

The top two panels show that these fluctuations in Ricardian and non-Ricardian beliefs
produce predicted time-paths for the output gap and inflation that is roughly in line with
actual U.S. data over the period (dashed lines).24 In particular, the model does a very good

23See Cho et al. (2002) for formal details behind escape dynamics following, in their terms, a “most likely
unlikely sequence.”

24The EKF produces the optimal one step ahead predictions of the state variables. An objective measure of
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job in matching the magnitudes and timing of fluctuations in inflation and the output gap.
The SE panel plots the surplus-GDP ratio. The model-implied surplus (solid line) captures
the broad trends seen in the data, but does not quite match the observed volatility

5.4 Counterfactual results

The model fits the data well in Figure 6. To dive deeper into these results, and better
understand how the learning dynamics play an important role, we turn to several counter-
factual exercises. Throughout, a counterfactual is constructed by extracting the predicted
shocks from the benchmark model simulations presented above. Then, assuming the same
realization of shocks, we can alter one or two structural parameters, calculate the model
predicted state path again with the new value for the parameters Θ̂. We first show coun-
terfactuals for a larger intensity of choice ω, and then we focus on the monetary and fiscal
policy implications.

5.4.1 The ‘intensity of choice’

Recall from the theoretical analysis that as ω → ∞ then one can expect to observe either
nt = 0, 1 or switching between the two if there are multiple misspecification equilibria as
forecasters will only select the best performing statistical models. To see how a stronger
‘intensity of choice’ in forecast model selection would impact the economy, we present a
counterfactual where ω = 300. Figure 7 plots the model implied state dynamics.

With the same sequence of shocks, the most likely path for nt, given the observed data, has
the predicted pattern. Until the late 1980’s, it is estimated that all agents have Ricardian
beliefs. This is not surprising from Figure 6 where, throughout this period, the fraction
n < 0.5, which implies that EU1 < EU2 in all periods. Thus, larger values of ω will decrease
n and, when the intensity of choice is large enough, feature n = 0. However, beginning in the
late 1980’s there are regime-changes between periods where all agents have non-Ricardian
beliefs, most agents have non-Ricardian beliefs, or very few have non-Ricardian beliefs. While
the timing is in line with Figure 6 the alignment is not perfect. That is because changing
ω leads to a counterfactual path for the entire state with the exception of the exogenous
shocks.

fit is, of course, elusive. The visual fit of the data is partly the result of the predicted paths for the exogenous
shocks. However, it should be noted that the fiscal shock process is very weakly autocorrelated and so that
the model does a plausible job with the surplus state variable suggests that the internal propagation of
shocks is an important component. Ideally we would use a formal model comparison to test our model
against others in the literature including regime-switching policy models and belief-driven models. However,
such an exercise is beyond the scope of this paper. These figures also were computed after shutting down
the observation noise and plotting the predicted paths as (non-linear) functions of the latent states.
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Figure 7: Counterfactual State Dynamics when ω = 300. Solid lines are model predicted
state variables. Dashed lines are corresponding U.S. data.
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The remaining panels demonstrate how the counterfactual path with a large intensity
of choice exhibits substantially greater output gap volatility and a relatively poor fit for
inflation post 1980. The counterfactual path for the surplus is similar to the benchmark case.
A natural question is what accounts for the regime-change in the late 1980’s in both Figure 6
and the counterfactual in Figure 7. An intuitive interpretation is that the shift in decreasing
primary surpluses throughout the sample until the mid 1980’s, and then an increasing surplus
throughout the 1990’s, created the kind of sequence of shocks– the “most likely unlikely”
sequence – that led individuals to discover that non-Ricardian beliefs provide a better forecast
and then this is reinforced through the self-referential features of the economy. The switching
between n = 0 and n = 1 equilibrium neighborhoods lead to substantial volatility. This is
because after each switch the agents’ learning process, essentially, starts anew.
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5.5 Monetary policy

Taylor-rule coefficients that react relatively more strongly to inflation innovations lead to
longer and more frequent spells with (non-)Ricardian beliefs. Counterfactual analysis estab-
lishes this result.

Recall from the theoretical analysis that the existence of RPE with non-Ricardian beliefs
is independent of the monetary policy coefficient φπ for large ω. However, even with large ω
the monetary policy rule coefficients impact the relative sizes of the basins of attraction.25

To explore the implication, we present results from several counterfactual experiments. As
above, we take as given the exogenous shocks from the benchmark path and then estimate
the predicted paths under two scenarios: a small policy coefficient φπ = 1.005, and, a large
value φπ = 2.5. See Figure 8 where φπ = 2.5.

This counterfactual asks the question of what would have happened to the economy had
policymakers placed a substantially higher weight on reacting to inflation innovations. The
SW-panel demonstrates that the effect of such a policy would have been to lead to a slightly
higher fraction of non-Ricardian agents, on average, throughout the sample period. During
the 1960’s and 1970’s, the NE-panel shows that the counterfactual effect would have been less
volatile inflation. However, during the 1990’s when there was a large run up in the surplus-
GDP ratio, this coincides with a larger fraction of non-Ricardian agents, by forecasting future
fiscal policy primarily using the surplus, leads to a substantial increase in both the inflation
rate and a positive output gap. In fact, the more aggressive monetary policy would lead to
a counterfactually large economic expansion.

Now consider the counterfactual with a value of φπ = 1.005 at the edge of the active
monetary/passive fiscal determinacy region (Figure 9). In this counterfactual exercise, there
is a significant decrease in the fraction of agents with non-Ricardian beliefs throughout the
sample: see the SW panel. In fact, for large ω the more dovish monetary policy would lead
to n = 0 with all individuals and firms holding Ricardian beliefs. The combination of a
less aggressive monetary policy response to inflation and an endogenously higher fraction
of Ricardian agents, leads to substantially greater volatility and a large deflation/negative
output gap during the 1990’s as the surplus is increasing substantially.

Notice the nuanced trade-off faced by policymakers here. A monetary policy rule could
be tuned to be more, or less, hawkish. If policymakers had adopted a less hawkish policy rule
that would have coordinated on a Ricardian regime for inflation. But, by being less active
against inflation the economic volatility would have been higher.26 If instead policymakers
had pursued a more hawkish policy rule, then inflation would have been non-Ricardian more

25This can be established formally as the n̂ = Tω (n̂) equilibrium, in the multiple misspecification equilib-
rium case, shifts with policy coefficients.

26This is a standard result in learning models: see result 5a in Eusepi and Preston (2018b).
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Figure 8: Counterfactual State Dynamics when φπ = 2.5. Solid lines are model predicted
state variables. Dashed lines are corresponding U.S. data.

1960 1970 1980 1990 2000 2010

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
G

A
P

1960 1970 1980 1990 2000 2010

-0.1

-0.05

0

0.05

0.1

0.15

IN
F

1960 1970 1980 1990 2000 2010

0.4

0.45

0.5

0.55

0.6

n

1960 1970 1980 1990 2000 2010

-1

-0.5

0

0.5

1

S
U

R
P

often, again with possibly higher volatility. This “goldilocks” prescription for monetary policy
is a novel finding in the learning literature and suggests that learning models can illuminate
a complex, nuanced trade-off faced by policymakers.

5.6 Monetary policy and endogenously Ricardian beliefs

The claim at the beginning of the previous section is that dovish monetary policy would have
led to more agents with non-Ricardian beliefs and hawkish monetary policy would have led to
fewer agents with Ricardian beliefs. To assess this claim, we again hold the exogenous shocks
fixed to their benchmark path, consider a variety of alternative policy rule coefficients, and
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Figure 9: Counterfactual State Dynamics when φπ = 1.005. Solid lines are model predicted
state variables. Dashed lines are corresponding U.S. data.
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then plot the empirical distribution of nt, the fraction of agents with non-Ricardian beliefs.

Figure 10 plots the empirical distributions from the counterfactual exercises of set-
ting the inflation reaction coefficient to a range of plausible values, in particular φπ =
1.2, 1.63, 2.0, 2.5.27 Evidently, a more hawkish monetary policy rule shifts the empirical
distribution towards more agents holding non-Ricardian beliefs. In fact, if the value for the
intensity of choice ω was also large, then a more hawkish policy can feature regime-switching
between the n = 0 and n = 1 misspecification equilibria: see Figure 11. That is, rather than
a drifting share of Ricardian agents as in Figure 6, Figure 11 suggests that there would be

27For expositional ease, we omit the φπ = 1.005 counterfactual from the plot.
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Figure 10: Counterfactual empirical distribution of Ricardian beliefs when φπ = 1.2, 2.0, 2.5
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abrupt, recurrent endogenous switching between the Ricardian and non-Ricardian regimes.28

5.7 Fiscal policy

The theoretical results show that the region for which an n = 1 misspecification equilibrium
(i.e., all agents are non-Ricardian) exists is increasing in the fiscal policy coefficient φb. As
predicted, a counterfactual analysis of larger values for φb lead to more non-Ricardian beliefs
and a greater frequency spent at the n = 1 non-Ricardian equilibrium. Recall, as well, that
larger values of φb produce less serial correlation in the primary surplus and government debt

28Similar findings arise if the central bank were to have altered the coefficient on the output gap φy.
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Figure 11: Counterfactual empirical distribution of Ricardian beliefs when φπ = 1.63, 2.0, 2.5
and ω = 300.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.002

0.004

0.006

0.008

0.01

0.012

bench

=2

=2.5

processes.

Figure 12 confirms this prediction over the sample period. There is a higher average
fraction of n and the time period when n > 0.5 arrives earlier. However, the panels in the
figure also show that such outcomes are not in line with actual U.S. economic experience. The
larger value for φb actually produces too little volatility – it decreases the serial correlation
in surplus and debt – in the surplus-GDP ratio and does not capture the overall movements
either. During the 1970’s this leads to counterfactually small output gaps, and post 1980
inflation dynamics that do not approximate actual inflation.

Plotting the empirical distributions for n, though, do show how a more aggressive fiscal
policy would lead to more non-Ricardian beliefs. Figure 13 plots the empirical distributions
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Figure 12: Counterfactual State Dynamics when φb = 0.10. Solid lines are model predicted
state variables. Dashed lines are corresponding U.S. data.
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if φb = 0.02, 0.10, 0.15. It is clear from Figure 13 that for passive fiscal policy rules with
φb = 0.02 − 0.10 that the distribution of Ricardian beliefs are fairly tightly distributed in
the interval [0.4, 0.6]. However, if φb = 0.15 instead, then the economy would have spent
a substantial fraction of time at the non-Ricardian equilibrium n = 1, as well as exhibit
regime-switches with the economy frequently being near the Ricardian equilibrium n = 0.
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Figure 13: Counterfactual empirical distribution of Ricardian beliefs when φb =
0.02, 0.043, 0.10, 0.15.
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6 Conclusion

This paper proposes a theory of expectation formation, based on restricted perceptions, that
produces endogenously (non-)Ricardian beliefs. The building blocks of our paper come from
the theory of non-Ricardian beliefs when individuals have imperfect knowledge about the
long-run consequences of fiscal and monetary policy, first proposed by Eusepi and Preston
(2018a). We follow Woodford (2013) and give the households and firms restricted perceptions
by allowing them to form expectations from models that include only a single fiscal variable –
either the existing stock of government bonds or the primary surplus – while model-consistent
rational expectations would condition on all relevant state variables. Despite the forecast

48



model misspecification, in a restricted perceptions equilibrium agents’ beliefs are optimal
within the restricted class. The set of forecast models entertained by agents are natural.
First, in complex forecasting environments with many state variables and potential degrees
of freedom limitations, forecasters typically embrace parsimonious models. Second, as we
show, the forecast models presented to agents are a natural formalization of endogenous
(non-)Ricardian beliefs. When all agents forecast with the “debt-model” then Ricardian
equivalence emerges as a self-confirming equilibrium. On the other hand, with some positive
fraction of “surplus-model” forecasters then Ricardian equivalence fails.

These results highlight the fragile nature of Ricardian equivalence and motivate our
central interest in focusing on misspecification equilibria as a refinement that endogenizes
the distribution of agents across these two forecasting models. We provide necessary and
sufficient conditions for (non-)Ricardian beliefs to emerge endogenously in a misspecification
equilibrium. Throughout, the government is committed to a policy regime where taxes
are adjusted to meet the government’s intertemporal obligations and monetary policy is
conducted via a Taylor rule. Our main theoretical results are as follows. If fiscal policy
adjusts the primary surplus sufficiently strongly to the existing stock of government debt
(while still remaining passive) then the non-Ricardian equilibrium can emerge as the unique
misspecification equilibrium. Conversely, a weaker adjustment of the surplus leads to a
unique Ricardian equilibrium. For some parameterizations of the model it is also possible
for there to exist multiple misspecification equilibria, with the simultaneous existence of
Ricardian and non-Ricardian equilibria.

This latter result motivates the quantitative exercise presented in the paper. Using the
estimates in Eusepi and Preston (2018a), we show that multiple equilibria may exist in
the U.S. economy and a real-time learning formulation where beliefs endogenously switch
between the Ricardian and non-Ricardian belief regimes provide an alternative interpretation
to the findings of regime-switching monetary/fiscal policy explanation of inflation in the U.S.
We estimate the extent of (non-)Ricardian beliefs using the data-implied predicted paths of
the endogenous state variables. Our estimates lead us to conclude that time-varying non-
Ricardian beliefs is a potentially important component of U.S. inflation dynamics.
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A Methodological framework

A.1 Computation of the restricted perceptions equilibrium

For a given distribution of PLMs, n, for all versions of the model the RPE can be computed
in a similar way. First, we can re-organize the ALM to obtain

yt = δ0bt+1 + δ1bt + δ2st + δ3ut (A.1.1)
bt+1 = ξ1bt + ξ2st + ξ3ut. (A.1.2)

Moreover, we can aggregate (12) and combine it with (6), (16), (A.1.1) and (A.1.2) to obtain

vt =µv,1bt + µv,2st + µv,3ut, (A.1.3)

and (16), (4), (A.1.1) and (A.1.2) imply that

p∗t =µp,1bt + µp,2st + µp,3ut. (A.1.4)

Next, recall that PLMs are given by

zt = ψsst−1 + ηt

zt = ψbbt−1 + ηt,

where zt ≡ (vt, p
∗
t )
′, ψs ≡ (ψsv, ψ

s
p)
′, ψb ≡ (ψbv, ψ

b
p)
′ and ηt ≡ (ηv,t, ηp,t)

′. This implies four
orthogonality conditions that can be written as

0
!

= E[st−1ηt] = E[stηt+1] (A.1.5)

0
!

= E[bt−1ηt] = E[btηt+1].

Now, plug the PLM and ALM into (A.1.5), i.e.,

0
!

= E[stηt+1] = E[st(zt+1 − ψsst)]
⇔ ψsE[s2

t ] = E[stzt+1]. (A.1.6)

Equation by equation, we obtain

⇔ ψsvE[s2
t ] = E [st (µv,1bt+1 + µv,2st+1 + µv,3ut+1)]

ψsvE[s2
t ] = µv,1E [stbt+1] + µv,2E [stst+1] + µv,3E [stut+1]

⇔ ψsv = µv,1
E[stbt+1]

E[s2
t ]

+ µv,2
E[stst+1]

E[s2
t ]

+ µv,3
E[stut+1]

E[s2
t ]

and (A.1.7)
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⇔ ψspE[s2
t ] = E [st (µp,1bt+1 + µp,2st+1 + µp,3ut+1)]

ψspE[s2
t ] = µp,1E [stbt+1] + µp,2E [stst+1] + µp,3E [stut+1]

⇔ ψsp = µp,1
E[stbt+1]

E[s2
t ]

+ µp,2
E[stst+1]

E[s2
t ]

+ µp,3
E[stut+1]

E[s2
t ]

. (A.1.8)

Likewise plug the PLM and ALM into (A.1.6), i.e.,

0
!

= E[btηt+1] = E[bt(zt+1 − ψbbt)]
⇔ ψbE[b2

t ] = E[btzt+1].

Again, equation by equation, we obtain

⇔ ψbvE[b2
t ] = E [bt (µv,1bt+1 + µv,2st+1 + µv,3ut+1)]

ψbvE[b2
t ] = µv,1E [btbt+1] + µv,2E [btst+1] + µv,3E [btut+1]

⇔ ψbv = µv,1
E[btbt+1]

E[b2
t ]

+ µv,2
E[btst+1]

E[b2
t ]

+ µv,3
E[btut+1]

E[b2
t ]

and (A.1.9)

⇔ ψbpE[b2
t ] = E [bt (µp,1bt+1 + µp,2st+1 + µp,3ut+1)]

ψbpE[b2
t ] = µp,1E [btbt+1] + µp,2E [btst+1] + µp,3E [btut+1]

⇔ ψbp = µp,1
E[btbt+1]

E[b2
t ]

+ µp,2
E[btst+1]

E[b2
t ]

+ µp,3
E[btut+1]

E[b2
t ]

. (A.1.10)

The next step is to compute the moments. For this purpose, it is convenient to combine
(A.1.2) and (7) in a VAR(1), i.e.,[

1 0
−φb 1

] [
bt+1

st+1

]
=

[
ξ1 ξ1

0 0

] [
bt
st

]
+

[
ξ3 0
0 1

] [
ut
zt+1

]
(A.1.11)

⇔ Yt = AYt−1 + Cεt, (A.1.12)

where Yt ≡ (bt, st)
′ and εt ≡ (ut−1, zt)

′.

Define the variance-covariance matrix Ω ≡ E[YtY ′t] and likewise Σ ≡ E[εtε
′
t]. Then we

can compute

Ω = E[(AYt−1 + Cεt)(AYt−1 + Cεt)
′] = AE[Yt−1Y ′t−1]A′ + CE[εtε

′
t]C
′

Ω = AΩA′ + CΣC′

⇔ vec(Ω) = [I−A⊗A]−1 (C⊗C) vec(Σ)

Moreover, the auto-covariance matrix is defined as E[YtY ′t−1], thus

E[YtY ′t−1] = E[(AYt−1Y ′t−1 + CεtY ′t−1)] = AE[Yt−1Y ′t−1] = AΩ.
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Notice that

Ω =

[
E[b2

t ] E[btst]
E[stbt] E[s2

t ]

]
, AΩ =

[
E[bt+1bt] E[bt+1st]
E[st+1bt] E[st+1st]

]
. (A.1.13)

Recall definitions Γsb ≡ E[bt+1st]/E[s2
t ] and Γbb ≡ E[bt+1bt]/E[b2

t ] as well as E[bt+1st] =
E[stbt+1], E[bt+1bt] = E[btbt+1], E[st+1st] = E[stst+1], and that E[stut+1] = E[btut+1] =
0. Moreover, recall that (7) implies that E[stst+1] = φbE[stbt+1] and that E[btst+1] =
φbE[btbt+1]. Thus, we can rewrite (A.1.7), (A.1.8), (A.1.9) and (A.1.10) as

ψsv(n) =µv,1Γsb + µv,2φbΓ
s
b (A.1.14)

ψsp(n) =µp,1Γsb + µp,2φbΓ
s
b

ψbv(n) =µv,1Γbb + µv,2φbΓ
b
b (A.1.15)

ψbp(n) =µp,1Γbb + µp,2φbΓ
b
b. (A.1.16)

These conditions can be solved for ψsv(n), ψsp(n), ψbv(n), and ψbp(n). In case for sb > 0,
this can only be achieved numerically as matrices A and C in (A.1.12) also depend on these
coefficients.

A.2 Computation of the misspecification equilibrium

Recall the objective (17). We combine (A.1.3) and (A.1.4) to

zt = µbbt + µsst + µuut, (A.2.1)

where zt ≡ (vt, p
∗
t )
′, µb ≡ (µv,1, µp,1)′, µs ≡ (µv,2, µp,2)′, and µu ≡ (µv,3, µp,3)′. Moreover, we

have

Es[zst ] = ψs(n)st, and (A.2.2)
Eb[zbt ] = ψb(n)bt. (A.2.3)

Thus, we can use (A.2.1) and (A.2.2) to compute

(zt − Es[zst ]) = µbbt + µsst + µuut − ψs(n)st = µbbt + (µs − ψs(n))st + µuut.

It follows that

(zt − Es[zst ])
′(zt − Es[zst ]) = (µ′bµb)b

2
t + [(µs − ψs(n))′(µs − ψs(n))]s2

t + (µ′uµu)u
2
t

+ 2[µ′b(µs − ψs(n))]btst + 2(µ′bµu)btut

+ 2[(µs − ψs(n))′µu]stut

∣∣∣E[·]
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Under the assumption E[btut] = E[stut] = 0 we get

E[(zt − Es[zst ])
′(zt − Es[zst ] = (µ′bµb)E[b2

t ] + [(µs − ψs(n))′(µs − ψs(n))]E[s2
t ]

+ (µ′uµu)E[u2
t ] + 2[µ′b(µs − ψs(n))]E[btst].

In consequence, we obtain

EU s =−
[
(µ′bµb)E[b2

t ] + [(µs − ψs(n))′(µs − ψs(n))]E[s2
t ] + (µ′uµu)E[u2

t ]

+2[µ′b(µs − ψs(n))]E[btst]] .

Likewise, we can use (A.2.1) and (A.2.3) to compute

(zt − Eb[zbt ]) = µbbt + µsst + µuut − ψb(n)bt = (µb − ψb(n))bt + µsst + µuut.

Therefore it follows that

(zt − Eb[zbt ])
′(zt − Eb[zbt ]) = [(µb − ψb(n))′(µb − ψb(n))]b2

t + (µ′sµs)s
2
t + (µ′uµu)u

2
t

+ 2[(µb − ψb(n))′µs]btst + 2[(µb − ψb(n))′µu]btut

+ 2(µ′sµu)stut

∣∣∣E[·]

Again we use the assumption E[btut] = E[stut] = 0 to obtain

E[(zt − Eb[zbt ])
′(zt − Eb[zbt ])] = [(µb − ψb(n))′(µb − ψb(n))]E[b2

t ] + (µ′sµs)E[s2
t ]

+ (µ′uµu)E[u2
t ] + 2[(µb − ψb(n))′µs]E[btst]

In consequence

EU b =−
[
[(µb − ψb(n))′(µb − ψb(n))]E[b2

t ] + (µ′sµs)E[s2
t ] + (µ′uµu)E[u2

t ]

+2[(µb − ψb(n))′µs]E[btst]
]
.

Finally, one can define F (n) : [0, 1]→ R as F (n) ≡ EU s − EU b, thus

F (n) =
[
(µb − ψb(n))′(µb − ψb(n))− (µ′bµb)

]
E[b2

t ]

+ [(µ′sµs)− (µs − ψs(n))′(µs − ψs(n))]E[s2
t ]

+ 2
[
(µb − ψb(n))′µs − (µ′b(µs − ψs(n))

]
E[btst].
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B Proofs

B.1 Proof of Proposition 2

Proof. Suppose that all agents have PLM (19). From the simplifications made in Section 4
it follows that (8) becomes

bt+1 = β−1(bt − st), (B.1.1)

which can be written as (A.1.2) with ξ1 ≡ β−1, ξ2 ≡ −β−1, and, ξ3 = 0. Moreover, (13) is
given by

yt = (β−1 − 1)(bt − st) + ψbvbt. (B.1.2)

Thus, coefficients in (A.1.1) are given by δ0 ≡ (1− β), δ1 ≡ ψbv, δ2 = 0, and, δ3 = 0.

Given homogeneous beliefs based on (19), i.e., vit = vt,∀i, the implications for (12) are

vit = (1− β)vit + (1− β)β[bt+1 − bt] + βψbvbt

βvit = (1− β)β[β−1(bt − st)− bt] + βψbvbt

vit = (1− β)[β−1(bt − st)− bt] + ψbvbt

vit = (β−1 − 1)(bt − st) + ψbvbt − (1− β)bt

vit = yt − (1− β)bt. (B.1.3)

The ALM is then given by (B.1.1), (B.1.2) and (B.1.3).

Now we can apply vt ≡
∫
vitdi to (B.1.3) and combine it with (B.1.2) to obtain (A.1.3)

with coefficients µv,1 ≡ [(β−1 − 1)− (1− β) + ψbv], µv,2 ≡ −(β−1 − 1), and, µv,3 = 0.

Under PF, i.e., assumption (9), we have 0 < β−1(1− φb) < 1 and {bt} follows a station-
ary AR(1) process. Thus, we can compute the unconditional moments following the steps
outlined in (A.1.11) to (A.1.13). Thus, we obtain

Γbb =
E[bt+1bt]

E[b2
t ]

= β−1(1− φb). (B.1.4)

where the linear projection E[bt+1] = Γbbbt satisfies an orthogonality condition. In conse-
quence, (A.1.15) is given by

ψbv =
[
(β−1 − 1)(1− β − φb) + ψbv

]
Γbb (B.1.5)

0 = ψbv −
[
(β−1 − 1)(1− β − φb) + ψbv

]
Γbb,
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and (22) follows.

Notice that (B.1.2) together with (7) and (22) imply that

yt = −(β−1 − 1)zt,

thus, Ricardian equivalence holds in the sense that yt depends not on bt, but only zt. Despite
transitory effects of the surplus shock on aggregate output, there are no real effects of public
debt. This proves Proposition 2.

B.2 Proof of Proposition 3

Proof. Suppose n = 1, i.e., all agents use PLM (18). In this case, (B.1.1) and (B.1.3) remain
the same, however (13) becomes

yt = −σ(φππt) + (1− β)β−1(bt − st) + ψsvst (B.2.1)
yt = (β−1 − 1)(bt − st) + ψsvst, (B.2.2)

where (B.2.1) can be written as (A.1.1) with δ0 ≡ (1− β), δ1 = 0, δ2 ≡ ψsv, and, δ3 = 0.

The ALM is then given by (B.1.1), (B.2.2) and (B.1.3). Thus, we can apply vt ≡
∫
vitdi

to (B.1.3) and combine it with (B.2.2) to obtain (A.1.3) with coefficients µv,1 ≡ [(β−1− 1)−
(1− β)], µv,2 ≡ ψsv − (β−1 − 1), and, µv,3 = 0.

Moments are computed as for (B.1.4) and we obtain (25), where the linear projection
E[bt+1] = Γsbst satisfies an orthogonality condition.

In consequence, (A.1.14) is given by (26) and therefore

⇔ ψsv =
(1− β)(1− β − φb)Γsb

β(1− φbΓsb)
= −β

−1(1− β)(1− β2 − φb)
(β + β2 + φb)

(B.2.3)

⇔ ψsv < β−1 − 1. (B.2.4)

From (B.2.2), (7) and (B.2.3) to (B.2.4) follows that

yt =
[
(β−1 − 1)(1− φb) + φbψ

s
v

]
bt −

[
(β−1 − 1)− ψsv

]
zt

yt =

[
(1− β)(1 + β − φb)
β(1 + β) + φb

]
bt −

[
(β−1 − 1)− ψsv

]
zt.

Thus, as yt depends on bt, Ricardian equivalence fails. This proves Proposition 3.
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B.3 Proof of Proposition 4

Proof. Consider the simplifications made in Section 4. Thus the TE dynamics are still
governed by (B.1.1). Moreover, as expectations are heterogeneous. Therefore (13) becomes

yt = (1− β)bt+1 +

∫ 1

0

Êi
tv
i
t+1di = (1− β)bt+1 + nψsvst + (1− n)ψbvbt, (B.3.1)

for given expectations on {p∗t (j), vit}, i.e.,

vit = (1− β)(bt+1 − bt) + Êi
tv
i
t+1∫ 1

0

vitdi = vt = (1− β)(bt+1 − bt) +

∫ 1

0

Êi
tv
i
t+1di

= (1− β)(bt+1 − bt) + nψsvst + (1− n)ψbvbt (B.3.2)
⇔ vt = yt − (1− β)bt (B.3.3)
p∗t (j) = 0.

Thus, coefficients in (A.1.1) are given by δ0 ≡ (1 − β), δ1 ≡ (1 − n)ψbv, δ2 ≡ nψsv, and,
δ3 = 0. Moreover, we can combine (B.3.2) with (B.1.1) and (B.3.1) to obtain (A.1.3) with
coefficients µv,1 ≡ [(β−1 − 1)− (1− β) + (1− n)ψbv], µv,2 ≡ nψsv − (β−1 − 1), and, µv,3 = 0.

The ALM is then given by (B.1.1) and (B.3.1) to (B.3.3). Coefficients in (18) and (19)
are required to satisfy the orthogonality conditions (20) and (21) respectively.

Notice that unconditional moments are computed as explained in Appendix A.1 above
and therefore the coefficients (25) and (B.1.4) are still true. Thus, we can obtain (A.1.14)
and (A.1.14) as

ψsv = [(β1 − 1)− (1− β) + (1− n)ψbv]Γ
s
b + [nψsv − (β1 − 1)]φbΓ

s
b

ψbv = [(β1 − 1)− (1− β) + (1− n)ψbv]Γ
b
b + [nψsv − (β1 − 1)]φbΓ

b
b.

Rearranging terms yields

ψsv = [(β1 − 1)(1− β − φb)]Γsb + [φbnψ
s
v + (1− n)ψbv]Γ

s
b (B.3.4)

ψbv = [(β1 − 1)(1− β − φb)]Γbb + [φbnψ
s
v + (1− n)ψbv]Γ

b
b. (B.3.5)

Clearly, n = 0 implies that (B.3.5) collapses to (B.1.5) and n = 1 implies that (B.3.4)
collapses to (26).
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Thus, we can solve for

⇔ ψsv(n) =
(1− β)Γsb(1− β − φb)

β
[
1−

(
φbnΓsb + (1− n)Γbb

)] =
(1− β2 − φb)β−1(1− β)

[1− β2 − n(1 + β − φb)− 2φb]

⇔ ψbv(n) =
(1− β)Γbb(1− β − φb)

β
[
1−

(
φbnΓsb + (1− n)Γbb

)] =
−(1− β2 − 2φb)(1− φb)β−1(1− β)

[1− β2 − n(1 + β − φb)− 2φb]
.

This proves Proposition 4.

B.4 Proof of Theorem 1

Proof. Recall that in this simplified version of the model (A.1.3) is given with coefficients
µv,1 ≡ [(β−1 − 1) − (1 − β) + (1 − n)ψbv], µv,2 ≡ nψsv − (β−1 − 1), and, µv,3 = 0. Moreover,
µp,1 = µp,2 = µp,3 = 0.

We can compute F (n) as outlined in Appendix A.2 above. We can also express F (n)
explicitly by plugging in, i.e.,

F (n) =

(
(1− β)2σ2

z

β2 (1− β2 − n(1 + β − φb)− 2φb)
2

)
× (B.4.1)(

2n(1− β2 − φb)(2(1− φb) + β(1− β))− (1− β2 − 2φb)(4(1− φb)− β(2 + 3β))
)

where σ2
z ≡ E[ztzt]. From (B.4.1) one can observe that the denominator of F (n) is always

positive and whether F (n) is positive or negative depends on the numerator. Then it is
straight-forward to verify Corollary 1 and therefore to prove Theorem 1.

B.5 Proof of Proposition 5

Proof. The TE dynamics in this case are (B.1.1),

yt = −σφππt + (1− β)bt+1 + nψsvst + (1− n)ψbvbt (B.5.1)

πt = κyt + ut + (1− α)β

∫
Êj
t p
∗
t+1(j)dj

= κyt + ut + (1− α)β
[
nψspst + (1− n)ψbpbt

]
(B.5.2)
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for given expectations on {p∗t (j), vit}, i.e.,

vt = (1− β)(bt+1 − bt)− σ(φπ − 1)πt + nψsvst + (1− n)ψbvbt (B.5.3)

p∗t (j) = (1− α)p∗t + (1− αβ) [ξyt + µt] + αβÊj
t p
∗
t+1(j) (B.5.4)∫ 1

0

p∗t (j)dj = p∗t =
(1− αβ)

α
[ξyt + µt] + β

∫ 1

0

Êj
t p
∗
t+1(j)dj

p∗t = (1− α)−1 [κyt + ut] + β
[
nψspst + (1− n)ψbpbt

]
(1− α)−1πt = (1− α)−1 [κyt + ut] + β

[
nψspst + (1− n)ψbpbt

]
πt = κyt + ut + (1− α)β

[
nψspst + (1− n)ψbpbt

]
. (B.5.5)

The ALM is then given by (18) to (19), (B.1.1), (B.5.1), (B.5.2), (B.5.3), and (B.5.4) to
(B.5.5) for given policy (7) and (8).

Next, we can combine (B.5.1) and (B.5.2) to obtain (A.1.1) with coefficients

δ0 ≡
(1− β)

(1 + σφπκ)
, δ1 ≡

(1− n)
(
ψbv − σφπ(1− α)βψbp

)
(1 + σφπκ)

,

δ2 ≡
n
(
ψsv − σφπ(1− α)βψsp

)
(1 + σφπκ)

, δ3 ≡
−σφπ

(1 + σφπκ)
.

Moreover, we use (A.1.1) to eliminate yt in (B.5.5), i.e.,

πt =κ [δ0bt+1 + δ1bt + δ2st + δ3ut] + ut + (1− α)β
[
nψspst + (1− n)ψbpbt

]
πt =

[
κδ1 + (1− α)β(1− n)ψbp

]
bt +

[
κδ2 + (1− α)βnψsp

]
st

+ [κδ3 + 1]ut + κδ0bt+1. (B.5.6)

Furthermore, we use (A.1.1), (A.1.2) and (B.5.6) to eliminate πt, yt and bt+1 in (B.5.3), i.e.,

vt =
[
(1− n)ψbv − (1− β)

]
bt + nψsvst − σ(φπ − 1)πt + (1− β)bt+1

vt =
[
(1− n)ψbv − (1− β)− σ(φπ − 1)

[
κδ1 + (1− α)β(1− n)ψbp

]]
bt

+
[
nψsv − σ(φπ − 1)

[
κδ2 + (1− α)βnψsp

]]
st

− σ(φπ − 1) [κδ3 + 1]ut

+ [(1− β)− σ(φπ − 1)κδ0] bt+1

vt =
[
(1− n)ψbv − (1− β)− σ(φπ − 1)

[
κδ1 + (1− α)β(1− n)ψbp

]]
bt

+
[
nψsv − σ(φπ − 1)

[
κδ2 + (1− α)βnψsp

]]
st

− σ(φπ − 1) [κδ3 + 1]ut

+ Ξ [ξ1bt + ξ2st + ξ3ut] , where Ξ ≡ [(1− β)− σ(φπ − 1)κδ0] .
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More concise, this is (A.1.3) with coefficients

µv,1 ≡
[
(1− n)ψbv − (1− β)− σ(φπ − 1)

[
κδ1 + (1− α)β(1− n)ψbp

]
+ ξ1Ξ

]
µv,2 ≡

[
nψsv − σ(φπ − 1)

[
κδ2 + (1− α)βnψsp

]
+ ξ2Ξ

]
µv,3 ≡ [ξ3Ξ− σ(φπ − 1) [κδ3 + 1]] .

Moreover, we use (A.1.2) to eliminate bt+1 in (B.5.6), i.e.,

πt =
[
κδ1 + (1− α)β(1− n)ψbp

]
bt +

[
κδ2 + (1− α)βnψsp

]
st + [κδ3 + 1]ut

+ κδ0 [ξ1bt + ξ2st + ξ3ut] ,

which, can be used to obtain (A.1.4) with coefficients

µp,1 ≡
[
κ (δ1 + δ0ξ1) + (1− α)β(1− n)ψbp

]
/(1− α)

µp,2 ≡
[
κ (δ2 + δ0ξ2) + (1− α)βnψsp

]
/(1− α)

µp,3 ≡ [κ (δ3 + δ0ξ3) + 1] /(1− α).

Thus, we can obtain (A.1.14) to (A.1.16) as

ψsv(n) =
(1− β)Γsb

[
(1 + κσ)(1− φb) + β2

(
φbnΓsb + (1− n)Γbb

)
− β

(
1 + (1− φb)

(
φbnΓsb + (1− n)Γbb

)
+ κσφπ

)]
β
[
1−

(
φbnΓsb + (1− n)Γbb

) (
1 + κσ + β

(
1−

(
φbnΓsb + (1− n)Γbb

)))
+ κσφπ

]
=

[
(1− β2 − φb)(1− β)

(
n(1 + β − φb)(1− β − φb)2 + (1− β2 − 2φb) (φb(1− β − φb)− κσ(φb + (βφπ − 1)))

)]
/D

D ≡β
[
−n2(β2 − (1− φb)2)2 + n(1 + β − φb)(1− β − φb)(1− β2 − 2φb)(1− β − κσ − 2φb)

+(1− β2 − 2φb)
2(φb(1− β − φb)− κσ(φb + (βφπ − 1)))

]

ψsp(n) =
(1− β)Γsbκ

[
1− φb − β

(
φbnΓsb + (1− n)Γbb

)]
(1− α)β

[
1−

(
φbnΓsb + (1− n)Γbb

) (
1 + κσ + β

(
1−

(
φbnΓsb + (1− n)Γbb

)))
+ κσφπ

]
=

[
(1− β2 − φb)n(1− β)κ(1 + β − φb)(1− β − φb)

]
/ [(1− α)D]

ψbv(n) =
(1− β)Γbb

[
(1 + κσ)(1− φb) + β2

(
φbnΓsb + (1− n)Γbb

)
− β

(
1 + (1− φb)

(
φbnΓsb + (1− n)Γbb

)
+ κσφπ

)]
β
[
1−

(
φbnΓsb + (1− n)Γbb

) (
1 + κσ + β

(
1−

(
φbnΓsb + (1− n)Γbb

)))
+ κσφπ

]
=

[
−(1− φb)(1− β2 − φb)(1− β)

(
n(1 + β − φb)(1− β − φb)2

+(1− β2 − 2φb) (φb(1− β − φb)− κσ(φb + (βφπ − 1)))
)]
/D

ψbp(n) =
(1− β)Γbbκ

[
1− φb − β

(
φbnΓsb + (1− n)Γbb

)]
(1− α)β

[
1−

(
φbnΓsb + (1− n)Γbb

) (
1 + κσ + β

(
1−

(
φbnΓsb + (1− n)Γbb

)))
+ κσφπ

]
=

[
−(1− φb)(1− β2 − φb)n(1− β)κ(1 + β − φb)(1− β − φb)

]
/ [(1− α)D] .

Based on the coefficients above, we can compute F (n) as outlined in Appendix A.2 above.
Taking the limit as σ → 0, and simplifying, produces the result in the text.
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