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Abstract

We investigate the anchoring and stabilization powers of forward-
guidance on macroeconomic dynamics in so-called liquidity traps. The
research proceeds within the baseline New Keynesian model in which non-
linearities give rise to multiple equilibria and deflationary recession paths.
Considering the major puzzle raised by homogeneous and rational expec-
tations in this model, we introduce heterogeneous expectations using a
social learning algorithm (Arifovic et al., 2012). The resulting framework
displays local stability and fits better US data and especially persistence at
the Zero Lower Bound (ZLB) than a switching regime rational expectation
model(Guerrieri and Iacoviello, 2015a). Nonetheless, our model displays a
strong expectation feedback loop: when agents’ assess solutions signaled
and expectations perform better than the central bank’s signal, these ex-
pectations could loose their anchorage at the targeted steady state. In this
model, instability is driven by a expectation miscoordination at the ZLB
rather than strong exogenous shocks. We find that if the central bank
signals the rational expectation solution, the stability of the economy is
significantly improved and expectations stay anchored at the cost of an
higher forecast dispersion.
Keywords: learning, forward guidance, bounded rationality, het-
erogeneous expectations, non-linear dynamics
JEL Classification: C69, D83, E03, E31, E52, E58, E61

∗Simon Fraser University (arifovic@sfu.ca)
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1 Introduction
The recent macro-economic performances in the turmoils of the Great Recession
have renewed the interest in the concept of liquidity trap (Keynes, 1936), i.e.
the coexistence of near-zero inflation with poor economic performances. In such
a context, the zero-lower bound (ZLB) constraints the nominal interest rates,
which are the primary stabilizing instrument of central banks. Additionally,
the increase in sovereign risk premia and the rising debt burden have rapidly
constrained the fiscal instrument, especially in the Euro area. Meanwhile, infla-
tion expectations have declined steadily.Therefore, central banks have deployed
a large range of alternative and innovative tools and policy measures. Aside the
so-called Quantitative Easing, central banks have reinforced their communica-
tion policy to act on the expectations of the private sector. In particular, at
the ZLB, communication has a bigger role than in a rather stable environment
because central bank projections are not just a purely informational tool, but
also acts as a strategic instrument to influence inflation expectations and, hence,
the real interest rate once the nominal interest rate is set to zero (Charemza
and Ladley, 2016). These communication measures in “crisis time” are referred
to as forward-guidance which include pure forecasts – i.e. Delphic forward guid-
ance – or extensive communication about future rates, broader transparency
and public self-imposed rules – i.e. Odysean forward guidance.
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Figure 1: Inflation expectations in the U.S and Euro-zone during ZLB periods

However, several conditions need to be present for forward guidance to be
effective (Blinder et al., 2008). The economy should not be stationary, but
displays instead indeterminacy regions or multiple steady states. Moreover, ei-
ther agents should face some form of bounded rationality in their expectations
(Sargent and Others, 1993; ?) or some information asymmetry w.r.t. the cen-
tral bank. As a corollary, agents should be able to learn and and revise their
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expectations from the central bank communication.
Hence, this paper develops a framework that displays those conditions. More

precisely, we use a non-linear New Keynesian (NK) dynamic stochastic general
equilibrium (DSGE) model in which non-linearities create multiple equilibria
and agents are boundedly rational. They form heterogeneous expectations using
social learning modeled with an evolutionary algorithm 1

The question of coordination between heterogeneous agents is also par-
ticularly relevant for forward guidance.There is extensive experimental evi-
dence (Hommes, 2011) and empirical works on forecasters (Mankiw et al., 2003;
Landier and Thesmar, 2017; Carroll, 2003) or consumers (Cavallo et al., 2014)
showing that heterogeneity in computation capacities and priors belief affect
in a non canonical way agents’ expectations. However, the rational and repre-
sentative agent paradigm rules out any coordination issue (Kaldor, 1972; Kir-
man, 2016), and the potential for coordination failures (Guesnerie, 2010). How-
ever, those coordination failures may be the origin of significant macroeconomic
volatility.

In this research, we choose to rely on evolutionary learning to model ex-
pectations in the macroeconomic framework that we consider. Our motivations
come both from the theoretically appealing features of these models (Lux and
Schornstein, 2005) and their ability to match experimental findings (Arifovic and
Ledyard, 2012) and some empirical surveys. Three features are especially well-
suited for the analysis of forward-guidance in an expectation-driven liquidity
trap. First, social learning allows us to explicitly account for some heterogene-
ity in expectations, and to tackle the related question of their coordination on
the objectives of the central bank. Second, social learning is able to feature an-
nouncements and news into agents’ expectation formation process, and therefore
allows us to integrate a forward-looking component in a learning mode(Arifovic
and Ledyard, 2012). Additionally, non-linearities, multiple equilibria, hetero-
geneity of expectations, and expectation driven dynamics complicate the learn-
ing and coordination process of agents that populate our model. The resulting
framework works along the line of a so-called “complex systemâĂİ, which re-
quires for the agents to be able to adapt to an ever-changing environment, in
which their own actions and expectations impact upon the resulting macroeco-
nomic dynamics, which in turn feedback their expectations. An evolutionary
learning process allows us to model adaptation in such a complex environment
in a parsimonious way.

With this framework at hand, we seek to answer the following questions:
What are the stability properties under evolutionary learning of the different
steady states? Is social learning a suitable setup to explain ZLB dynamic and
low inflation persistence? Can central bank forward guidance policy steer expec-
tations away from the unintended stagnation equilibrium towards the targeted
steady state? Or, can forward guidance help keep expectations anchored at the
target and prevent a fall in a stagnation trap in case of strong adverse shocks?
If yes, under which conditions?

1see Arifovic (2000), Arifovic et al. (2012),and Arifovic et al. (2017)
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Some of these questions have been tackled under rational expectations (see
Guerrieri and Iacoviello (2015a) and Borağan Aruoba et al. (2017)) and under
homogeneous expectations formed by adaptive learning (Bullard et al., 2002).
The empirical literature also provides some evidence. We summarize this lit-
erature in a separate section below. The main innovative feature of this paper
is to introduce heterogeneous expectations within a baseline NK model with
non-linerarities and multiple steady states. This allows us to explicitly address
the question of agents’ coordination. We model forward guidance in the form
of providing the agents with the knowledge about the future interest rates or
the central bank’s corresponding inflation and/or output forecasts. We then ask
how can forward guidance act upon the heterogeneity of non aggregate expec-
tations to achieve coordination between agents on the targeted state? Again,
how do the effects of forward guidance depend on the monetary policy design
or the learning parameters of the model?

We show in this paper that our model is able to reproduce the properties
of the US macro-economic dynamics between 1947-2017. The model is stable
under learning and able to transition between the ZLB constrain state and non
constrain state without ad-hoc switching mechanism. A forward guidance in the
form a MSV signal stabilizes efficiently the model and avoid endogenous switch-
ing. Yet, when credibility of the CB’s is assessed, forward guidance hindered
the model stability.

This paper proceeds as follows. Section 2 discusses the related literature.
In Section 3, we develop the theoretical framework, the stability properties of
the model are analyzed in Section 5 and the estimation strategy in Section4.
Section 6 presents our results and Section 7 concludes.

2 Literature review
The academic literature provides fairly recent results on the effects of forward
guidance at the ZLB. On the empirical side, the literature provides supportive
conclusions (Del Negro et al., 2012; Hubert, 2015; Andrade et al., 2015; Camp-
bell et al., 2016). Few laboratory experiments provide more mixed evidence,
see Kryvtsov and Petersen (2016); Mokhtarzadeh and Petersen (2016); Arifovic
and Petersen (2015); Amano et al. (2011).

From a theoritical viewpoint, forward guidance within rational expectation
models has given rise to the so-called “forward guidance puzzleâĂİ: standard
DSGE models predict explosive inflation and output dynamic when the short-
term interest rate hits the ZLB for an extended period of time (Carlstrom et al.,
2012). However, in the Eurozone and the U.S, interest rates have been pegged
to zero for much longer horizons without substantial changes in the price lev-
els. Thus, showing that DSGE models fails at explaining the behavior of the
economy at the ZLB, Del Negro et al. (2012) point out that this puzzle results
from the core ingredients and the calibration of those DSGE models that are
widely used both in academia and in policy making institutions. A first inno-
vation upon the standard way that DSGE models are used is to use rational
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expectation models in their non-linear form. Within non-linear models, multiple
equilibria arise, and some of these equilibria correspond to a liquidity trap state
(McCallum, 2003). However, this does not solve the puzzle: in this class of mod-
els, a liquidity trap gives rise to unstable dynamics (Fernández-Villaverde et al.,
2015; Ascari and Rossi, 2009), characterized by excess macroeconomic volatility
or microfondation puzzle (Guerrieri and Iacoviello (2015a) and Borağan Aruoba
et al. (2017)) under rational expectations (Benhabib et al., 2001a,b), and defla-
tionary spirals under adaptive learning (Evans et al., 2008).

Nonetheless, heterogeneous expectations (Farhi and Werning, 2017) and be-
havioral approach (Goy et al., 2016) alongside space learning (Gabaix, 2016) in
DSGE models have lead to some improvement in the forward guidance puzzle
issue.

Several papers rely on non-linerarities to account for the recent state of af-
fairs. use an extension of a non-linear NK model enabled by the Rotemberg
pricing rule that has an additional steady state characterized by stagnation
trap, see Benhabib et al. (2001a,b), Evans et al. (2008), Evans et al. (2016),
Arifovic et al. (2017), Hommes et al. (2015) and Lansing (2017). This steady
state is locally determinate under rational expectations, and locally stable un-
der learning, like the targeted steady state. Those models therefore provide a
unified framework to account for both periods of macroeconomic stability and
of stagnation below the targeted levels of economic activity and inflation.

In this class of models, agents’ expectations play a key role: only negative
shocks on expectations can push inflation and output away enough from their
targeted levels to engage them on a stagnation equilibrium path. Put differently,
this class of models offers a reading of the current economic situation as a
coordination of agents’ expectations on a locally stable equilibrium path which
is socially sub-optimal, but co-exists next to the socially desirable, targeted
equilibrium path. Evans et al. (2008), Evans et al. (2016) and Hommes et al.
(2015) investigate the role of fiscal and monetary policy mix in this context, but
do not tackle the effects of forward guidance and central bank communication.

This paper does not use a non-linear model, but instead imposes the non-
linearities in the log-linearized form derived from the widely-used sticky prices
setup à la Calvo (1983). This feature, which admittedly decreases precision of
the dynamics far enough from the steady states, enables us to stress-out the
multiplicity of steady states, with a normal times targeted state, a deflationary
state and a stagnation state, while keeping the model simple enough to introduce
heterogeneous expectations.

3 A behavioural New Keynesian model
3.1 The model
Our model builds on the standard baseline three-equation NK model developed
by, inter alia, Woodford (2011).

The model consists in the following Euler equation with ŷ the output gap, π̂
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the inflation rate deviation from the target, î the nominal interest rate deviation
set by the central bank, ĝ and û two exogenous variations of the demand and
supply, (due to a so-called real shocks) and σ the intertemporal elasticity of
substitution of consumption (based on a CRRA utility function). r = π∗β−1 is
the natural level of interest rate and π∗ the quarterly targeted level of inflation.

ŷt = Eit ŷt+1 − σ−1(̂it − Eit π̂t+1) + ĝt (1)

The supply side is summarized by the forward looking New Keynesian Philips
Curve where 0 < β < 1 represents the discount factor and κ > 0 a composite
parameter capturing the slope of the Phillips curve. κ could be decomposed in
this manner κ = (δ + σ)(1− θ) 1−βθ

θ with θ the Calvo update setting and γ the
labor elasticity.

π̂t = κŷt + βEit π̂t+1 + ût (2)

The real shocks follows an exogenous auto-regressive disturbance with εgt and
εut random draws normal centered with the respective standard deviation sdg

and sdu.
ĝt = ρg ĝt−1 + εgt (3)

ût = ρuût−1 + εut (4)

With 0 < ρu < 1 and 0 < ρg < 1 the persistence of both shocks. We use
the standard forward looking Taylor rule where φπ and φy are the respective
reaction coefficients to output and inflation gaps.

ît = φπEit π̂t+1 + φyEit ŷt+1 (5)

Adding (5) into (1) and the result into (2) we can write the model’s policy
function into this reduced form:

zt = α+BEitzt+1 + χg ĝt + χuût (6)

with zt =
[
ŷt
π̂t

]
,α =

[
0
0

]
, B =

[
1− σ−1φy σ−1(1− φπ)

κ(1− σ−1φy) β + σ−1(1− φπ)κ

]
, χg =

[
1
κ

]
and χu =

[
0
1

]
We are interested in states far from the targeted steady state, which implies

the use of non-linearities. The first one is most common. Following e.g. Nakov
(2008), we had a ZLB to the monetary policy rule:

it = max{−r;φπEit π̂t+1 + φyEit ŷt+1} (7)

In addition, following Evans et al. (2016), we consider the existence of an infla-
tion and output lower bounds respectively named y and π. This feature enables
us to stabilize the output in a lower bound after an unstable depressive episode
in the indeterminate region of the state space. These bounds can be explained
by an extreme downward rigidity of wages near the subsistence level or the ex-
istence of inter-temporal arbitrages. Thus, we end up with another steady state
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î

π̂
π

Figure 2: Existence of multiple steady state with ZLB and inflation lower bond
(grey zone is indeterminate under rational expectation

at the inflation lower bound that we call the stagnation state, following Evans
et al. (2016).

Adding the ZLB constrained generates a deflation steady state when defla-
tion rate matches the discount factor. At this moment, agents are indiferent
between risk-free bonds and consumption. Evidence for the existence of this
lower bound are discussed theoretically in Benhabib et al. (2001b) and empir-
ically in IMF. As shown by these works, a non linear Taylor rule implies the
existence of multiple steady states : the social optimum or targeted steady states
(ŷ = 0, π̂ = 0) and others, including low inflation steady state (ŷzlb, π̂zlb) and
(π, y). This multiplicity is illustrated in a one-dimensional system with only
inflation and interest rate dynamics in figure 2: provide that π < π̂zlb ≤ 0, two
equilibria exist when the Fisher equation intersect the non-linear Taylor rule,
and the lower bound is a way to stabilize the unstable dynamics of the model
arising for inflation values for which the Taylor condition does not hold.

We can then write the log approximated Fisher equation as follows:

î = βπ̂ (8)

at the Targeted steady state where no deviation occurred :

î = βπ̂ = 0 (9)
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And at the ZLB, we can derive an equilibrium such that:

− r = βπ̂ ⇔ π̂zlb = β(1− π∗β−1) (10)

3.2 Solving the model under RE
We now solve the model under REE and describe the dynamics under Social
Learning. Expressing the model in reduced form is challenged by the non-
linearities and we need to express it in three pieces around each of the three
steady states: around the targeted steady state, when the ZLB is binding and
when lower bounds are binding. Using the method of the undetermined coeffi-
cients, we express expectations in the form:

zet = a+ cρg ĝt + dρuût (11)

Under rational expectations, we can write in this fashion :

Ezet+1 = a+ cgt+1 + dut+1 ⇔ Ezet+1 = a+ c(ρg ĝt + εgt ) + d(ρuût + εut ) (12)

and because εgt and εut are normalized to centered values, we deduce F (εgt ) = 0
and F (εut ) = 0 and we can write the following expectation process:

Ezet+1 = a+ cρg ĝt + dρuût (13)

Plugging (35) into (12) we have:

zt = α+B[a+cρggt+dρuut]+χggt+χuut ⇔ zt = α+Ba+gt(Bcρg+χg)+ut(Bdρu+χu)
(14)

Thus, the rational expectation solution is the following system :
a = (I −B)−1α

c = (I −Bρg)−1χg

d = (I −Bρu)−1χu
(15)

When the ZLB is not binding if (φy(a1 +c1ρ
g ĝt+d1ρ

uût)+φπ(a2 +c2ρ
g ĝt+

d2ρ
uût) > −r) our results are conformed to previous established ones. Plugging

the Taylor rule into the Euler equation and the result into the NKPC, we deduce
that the model can be written in a reduced form:

zt = α+BEtzt+1 + χggt + χuut (16)

with zt =
[
yt
πt

]
, α =

[
0
0

]
, B =

[
1− σ−1φy σ−1(1− φπ)

κ(1− σ−1φy) β + σ−1(1− φπ)κ

]
, χg =[

1
κ

]
and χu =

[
0
1

]
Using those matrices, thee solution satisfy equilibrium and

uniqueness conditions such as: φy < σ(1+β−1) and 0 < κ(σπ−1)+(1+β)σy <
2σ(1 + β).
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In the same manner, when the ZLB is binding (φy(a1 + c1ρ
g ĝt + d1ρ

uût) +
φπ(a2 +c2ρ

g+d2ρ
uût) < −r) but the Taylor’s condition still holds (πet+1 > −r),

we substitute the monetary policy equation into both equations and end up with
an RE equilibrium solution:

zt = αzlb +Bzlbzet+1 + χg ĝt + χuût (17)

with zt =
[
yt
πt

]
, αzlb =

[
σ−1r
κσ−1r

]
and Bzlb =

[
1 σ−1

κ β + σ−1κ

]
.

Yet, this RE solution is explosive and does not satisfy Blanchard, Olivier;
Kahn (1980) conditions because on the eigenvalues on the Bzlb matrix do not lie
within the unit circle. This is consistent with previous analysis and our upcom-
ing numerical result that shows that the model is unstable at this equilibrium.

When Taylor’s conditions do not hold (i.e. when a2 +c2ρg ĝt+d2ρ
uût < −r),

the model falls into indeterminacy and the lower bounds on output and inflation
eventually bind. The rational expectation result satisfies:

yt = y + ρggt (18)

πt = π + κρg ĝt + +ρuût (19)

in a reduced form:
zt = α+Bzet+1 + χg ĝt + χuût (20)

with zt =
[
yt
πt

]
, α =

[
y
π

]
and B =

[
0 0
0 0

]
.

3.3 Expectations under social learning
We now introduce a process of expectation formation based on an evolutionary
learning algorithm along the lines of Arifovic et al. (2012) and Arifovic et al.
(2017). This algorithm models heterogeneous expectations evolving through
a genetic algorithm (Holland, 1975; Dawid, 1999; Black, 1995), which evolves
through stochastic and interaction processes. Social learning introduces two
mechanisms that homogeneous rational expectation models rule out: coordina-
tion issue and bounded rationality. Agents explore the solution space (π̂e, ŷe)
thanks to stochastic innovations and an imitation process. In each period, agents
evaluate the performance of their forecasts compared to the realizations of the
variables and revise them to increase their accuracy for the next period.

There are N agents, indexed by j = 1, · · · , N , each agent has an individual
perceived law of motion consistent with the MSV solution of the model such as:

ESLj,t ŷt+1 = a1,j + c1,jρ
g ĝt + d1,jρ

uût (21)

ESLj,t π̂t+1 = a2,j + c2,jρ
g ĝt + d2,jρ

uût (22)

with the a, c and d coefficients are real numbers. Hence, every agent has a six

coefficients strategy so that agent j is described by
[
a1,j c1,j d1,j
a2,j c2,j d2,j

]
.
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Contrary to Arifovic et al. (2012) and Arifovic et al. (2017) agents do not
assess the fitness of their forecasts thought the history of their forecast errors,
measured by the mean past absolute error. This process generate some time
inconsistency when simulations were running for a long time. Thus, in this
paper agents develops an auto-regressive fitness function. The auto-correlation
coefficient is arbitrary equal to the real shocks’ ones to ease the estimation
process. Yet this hypothesis is consistent with the adaptive learning hypoth-
esis as in Evans and Honkapohja (1999) where agent know the autocorrela-
tion/persistence of exogenous.

F yj,t = ρgF yj,t−1 − (1− ρg)(ŷt − ESLj,t−1ŷt)2 (23)

Fπj,t = ρuFπj,t−1 − (1− ρu)(π̂t − ESLj,t−1π̂t)2 (24)

Now, let us aggregate expectations over agents:

ESLt π̂t+1 = 1
N

N∑
j=1

ESLj,t π̂t+1 (25)

ESLt ŷet+1 = 1
N

N∑
j=1

ESLj,t ŷt+1 (26)

After clarifying the aggregation process, the five updating steps of the fore-
cast rule can be described. In every period, agents’ strategies follow sequentially
the three standard genetic operators, namely: mutation, crossover (for the ex-
ploration part) and tournament (for the exploitation part).

Exploration: Mutation In each period, with an exogeneously fixed proba-
bility mu, each agent’ coefficient changes as:

xt+1 = xt + ιxt
Xξ (27)

With x = a1, a2, c1, c2, d1, d2 the value of the mutating coefficient, ι a random
draw from a normal center distribution, ξ the mutation standard deviation and
X the steady state value of the concerned variable (e.g output or inflation).
Mutation is an operator that enables agents to find new solution or to dis-
cover better forecasts outside the agents’ common knowledge. Mutation can be
assimilated to a private signal, a noise within the solution space or a control
error.

Exploitation: Tournament The next genetic operator is referred to as the
tournament. This process is the selection force of the algorithm. All agents
are randomly paired afresh and compare their fitness. The one with the low-
est fitness copies the strategy and the fitness value of the other. Thus, poor-
performing strategies tend to disappear in favor of better-performing ones.
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Figure 3: Representation of the Social Learning Algorithm under Forward Guid-
ance Treatment and credibility assessment (When the forward guidance treat-
ment is not implemented every agent goes through the mutation branch)
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Finally, in our model, liquidity traps arise as a result of a drop in expecta-
tions, not due to exogenous processes like in DSGE models with discount factor
shocks following Markov processes (see e.g. Arifovic et al. (2017)).

Note that our algorithm is even simpler and more parsimonious than in
Arifovic et al. (2012) or Arifovic et al. (2017), and the results below do not
necessitate a learning phase nor do they depend on the initialization procedure.

4 Estimation Strategy
Here, mention, without stressing, especially regarding the calibration of the
Phillips curve: ‘the chosen calibration compensates the absence of frictions, es-
pecially consumption habits, that limits the ability of the simple three-equation
model to fit the data. Adding such frictions would add state variables to the
MSV solutions and considerably complicate the social learning process, without
bringing further insights into the dynamics’.

Ergodicity of the model is a clear improvement upon previous literature.
We now proceed to estimate some of the model’s key parameters, by match-

ing empirical moment statistics with their theoretical counterpart from the
model. We employ the Simulated Moments Method (SMM) to estimate the
model’s structural parameters as initially developed by McFadden (1989). The
standard workhorse New Keynesian model - described in Equation 1 to 5 - can
be expressed in the following compact form:

E∗t {fΘ (zt+1, zt, zt−1, εt)} = 0 for ∗ = {RE,SL} (28)

where zt is the set of endogenous variables, εt the set of iid innovations and fΘ (·)
the model’s equations using calibration Θ. We thus contrast the two possible
ways of forming expectations Eit {·} through standard rational expectations or
through the social learning process. The SMM approach provides a regular
basis to evaluate whether models in Equation 28 are able to replicate salient
business cycle properties. In the following fit exercise, we originally consider
the zero lower bound as an explicit objective to match along other standard
business cycle moments. We employ the piecewise solution method developed
by Guerrieri and Iacoviello (2015b) for the rational expectation model, while
for the social learning one, we use an optimized version of algorithm of Arifovic
et al. (2012) or Arifovic et al. (2017).2

We partition the parameters Θ into two sets: the first set contains mainly
technology and preferences parameters which we calibrate following the litera-

2The mutation involved by the social learning may generate unstable dynamics when one
(or a combination) of mutation(s) is too large. The solution usually adopted by Arifovic
et al. (2012) is to draw a large number of parallel economies and select the median of them.
However, the selection process of an average stable path is computationnally intensive and
slows down the optimization exercise. We solve this issue by selecting the median, prior to
the optimization, which allows to speed up the algorithm and makes the estimation as quick
as for the rational expectation models. This selection process of the stable median prior the
estimation is comparable to selecting the stable roots in the policy function of a rational
expectation model.
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ture. The second set θ ∈ Θ contains parameters that we estimate by minimizing
the distance between simulated and empirical moments.Θ contains parameters
that we estimate by minimizing the distance between simulated and empirical
moments.

4.1 Calibrated Parameters
Table 1 reports the set of calibrated parameters. To be comparable on a regular
basis, we employ the same calibration between the rational expectation and
the social learning algorithm. However, the social learning algorithm is more
sophisticated and requires to fix an additional set parameters that shape the
expectation formation and heterogeneity between agents.

For common parameters, our calibration is rather standard and mainly re-
lies on the contribution of Woodford (2002). In particular, the consumption
risk aversion coefficient is normalized to one, σ = 1, as well as the labor supply
elasticity, ϕ = 1. We fix the Calvo parameter θ to 0.90, which is a relatively high
value with respect to the canonical estimation of Smets and Wouters (2007a).
However, the recent US experience, characterized by a combination of low in-
flation and nominal rate at the ZLB, has flatten the Phillips curve, which ma-
terializes in our model though a high value for the Calvo parameter (see Gourio
et al. (2017) for a similar calibration). This allows to accurately portray this
new weak correlation link between inflation and output since the financial crisis
episode. Finally, regarding monetary policy reaction parameters, we employ the
values estimated by Taylor (1993).

Regarding the calibration determining the social learning expectation forma-
tion process, it comprises 4 parameters. The first one, is the mutation standard
deviation (ξ) which is not very significant. An higher ξ generates a bigger noise
at the steady state and act as expectation amplificator without jeopardizing the
stability of the model. We choose to fix this parameter at 0.1 which is consistent
with previous findings of Arifovic et al. (2012, 2017). We depart from the latter
by increasing the mutation standard deviation ξ up to 5% to adjust the expec-
tation response consistently with empirical evidence. Mutation is proportional
to the steady state of expected variables. We thus define the steady state of
output Y = 1/3 and inflation π̄ = 0.005. Since hours worked represents 1/3
of time per day for the US economy, output is given the same value via the
production function. For inflation, we simply consider the average quarterly
inflation rate for the US economy. A more crucial parameter is 0 < µ < 1 the
learning parameter which stands for the probability to mutate and crossover.
The higher µ is the higher mutation, crossover are happening. On the other
side, the lower µ is the more consistent agents’ expectations are if we initiate
around the targeted steady state. Yet, the value of µ does not affect neither the
stability nor the fundamental property of the model. Nonetheless a higher µ
enables faster change in the perceived steady state level value and eases longer
persistence at the steady state. Thus we set the calibration to µ = 0.25 which
is consistent with Arifovic et al. (2012) and higher than Arifovic et al. (2017).
Finally, we set the agent population as in Arifovic et al. (2017) at N = 300 to
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Rational
Expectations

Social
Learning Sources

σ consumption risk 1 1 Woodford (2002)
ϕ labor disutility curvature 1 1 Woodford (2002)
θ calvo probability 0.90 0.90 Gourio et al. (2017)
φπ policy stance on inflation 1.50 1.50 Taylor (1993)
φy policy stance on output 0.125 0.125 Taylor (1993)
π̄ steady state inflation rate 1.020.25 1.020.25 US Data
Y steady state output 1/3 1/3 Hansen (1985)
µ mutation probability × 0.25 Arifovic et al. (2012)
ξ mutation standard deviation × 0.05 Arifovic et al. (2012)
N number of agents × 300 Arifovic et al. (2012)
B number of draws × 100 Arifovic et al. (2012)

Table 1: Calibration of the model under alternative expectations

avoid like Arifovic et al. (2012) unjustified jump due to single mutation at a
steady state when there is no perturbation.

4.2 Estimated Parameters
Let mT (xt) be a p×1 vector of moments calculated using stationary and ergodic
real data xt of sample size T and ms,τ

(
x̂θt
)

the model-generated counterpart
based on artificial series x̂θt of size τ generated using the set of parameters θ.
To get an unconditional measure of simulated moments, we exploit asymptotic
properties of Monte-Carlo methods by sampling s different sequences of shocks
of size τ and compute the unconditional moment as an average from the s
moments from each sequences.3 Artificial series x̂θt are obtained from models in
Equation 28 that are solved either with rational expectations or social learning.
The SMM estimator is defined as:

θ̂SMM = arg min
θ

[
mT (xt)−ms,τ

(
x̂θt
)]′

W
[
mT (xt)−ms,τ

(
x̂θt
)]

(29)

where mT (xt)−ms,τ

(
x̂θt
)

is the distance vector between the observed and the
simulated moments that we seek to minimize, and W is the weighting matrix.
The matrix product in Equation 29 provides the sum of the squares of the
residuals between observed and matched moments. We solve Equation 29 using
the CMAES optimization algorithm of ?.4

3To ensure that each iteration of the optimization algorithm are performed on a regular
basis, we randomly draw s different sequences of shocks of size τ at the initialization of the
fit exercise, and keep them unchanged during the optimization. In this paper, we generate
artificial series of size τ = 250 and drop the first 50 draws. These artificial series are drawn s =
40 different times to approximate the unconditional moments used in the objective function.

4Contrary to other alternative algorithm, CMAES is able to deal with large scale opti-
mization problem and provide an accurate measure of the hessian matrix even with bound
restrictions for control variables in Equation 29.
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To avoid identification issues, the number of parameters to be estimated is
the same as the number of matched moments, so that each estimated parameter
is directly mapped to an empirical moment. The mapping strategy reads as
follows: standard deviations of shocks σg and σu capture the empirical volatility
of output and inflation, while roots of the shocks capture the auto-correlation
of observable variables. Finally, the discount factor is estimated to capture
the zero lower bound probability. An increasing discount factor mechanically
lowers the nominal rate through the Euler equation, and increases the likelihood
of hitting the zero lower bound: the probability of hitting the zero lower bound
P [r̃t ≥ (1 + π̄) /β − 1] is a function of β for a linear approximation to the policy
function.5

To speed up the optimization exercise, we set bound restrictions for es-
timated parameters. These restrictions are deemed necessary with a model
featuring the zero lower bound on the nominal interest, as the latter can be
induce indeterminacy, in particular when the standard deviation of shocks is
unbounded. We first estimate a NK-RE model without the ZLB, we find that
the demand shock is ten times more volatile than for the supply shock. We thus
set a bound restriction [0;1] for the demand shock, and [0;0.1] for the supply
one. The persistence of shocks are imposed to be between 0.5 and 1. Finally,
the discount factor support restriction [0.97;0.998] allows the quarterly nominal
rate to lie in the interval [1.007;1.0361], which is fairly consistent with the US
historical experience.

Estimated parameters are reported in Table 3 while matched moments are in
Table 2. We first compare the matched moments to evaluate which model best
replicates business cycle moments. Not surprisingly, the SL model outperforms
the RE model with an objective function 35% lower. In particular, the SL
model is better at capturing all of the moments except the autocorrelation of
inflation. The latter is understated by the RE model and overstated by the SL
model. Regarding estimated parameters, both models replicate business cycles
moments using rather different sets of parameters. The RE model employs more
persistent shocks combined with a larger demand shock and a smaller supply
shock. The discount factor is also very different between models as the SL
model is able to replicate the ZLB with a rather high nominal rate unlike the
RE model.6 This gap is mainly driven by endogenous stagnation traps that can
arise within the SL model, when agents hold pessimistic expectations about
future output and inflation. These pessimistic expectations allows the economy
so stay for an extensive period of time at the ZLB (see 4).

5The ZLB binds when the following condition holds: rt = 1. Thus, applying a first
order approximation of this condition, r̄ (1 + r̃t) = 1, which can be rewritten as r̃t =
r̄−1 − 1 = (1 + π̄) /β − 1. The ZLB probability is thus approximated by: P [rt ≥ 1] '
P [r̃t ≥ (1 + π̄) /β − 1].

6The estimated SL model exhibits a nominal rate of 1.0193 the corresponding counterpart
for the RE model is 1.0121.
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Figure 4: Sample of the model behavior on 100 draws after estimation
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Empirical Theoretical Moments
Moments Rational Expectations Social Learning

σ(ŷt) output std. 4.68 4.67 4.68
ρ(ŷt, ŷt−1) output autocorr. 0.98 0.83 0.86
σ(π̂t) inflation std. 0.57 0.62 0.61
ρ(π̂t, π̂t−1) inflation autocorr. 0.86 0.83 0.93
P (rt = 1) ZLB probability 0.10 0.12 0.09
Objective function × 0.025 0.016

Table 2: Business cycle statistics comparison between estimated models

Support Rational Expectations Social Learning
Estimated Parameters [min;max] Mean STD Mean STD
σg - demand shock std [0.000;1.000] 0.7137 6.47e-07 0.6200 1.01e-06
ρg - demand shock AR [0.500;0.999] 0.9502 3.41e-07 0.8090 4.58e-07
σu - supply shock std [0.000;0.100] 0.0186 2.16e-07 0.0613 2.39e-07
ρu - supply shock AR [0.500;0.999] 0.8332 6.67e-07 0.6334 1.68e-07
β - discount factor [0.970;0.998] 0.9928 6.05e-07 0.9860 8.04e-08

Notes: Confidence intervals are computed using the Hessian matrix.

Table 3: Estimated parameters using the simulated moment method

5 Stability under learning
We now examine the model stability properties through Monte-Carlo simula-
tions. Stability under learning properties is a critical point in the bounded
rationality literature in macroeconomics (Evans and Honkapohja, 1999, 2003;
Bullard et al., 2002). Benhabib et al. (2001a), Hommes (2013), Evans et al.
(2008) and Branch and McGough (2010) show determinacy and stability re-
sults in function of learning parameters, monetary rule coefficients and shocks
magnitude in a similr class of models. Arifovic et al. (2012) and Arifovic et al.
(2017) establish the stability under social learning in a linear NK model. In
our model, the targeted steady state is stable under learning, as well as the
stagnation state, but the deflationary one is unstable.

In order to generalize our conclusion, we simulate our model over a grid of

initialization points of the
[
a1,i
a2,i

]
and display the dynamic in the solution space

(π̂e, ŷe) (see 5). Those simulations show that the model converges to either
the target - intersection between the black and green lines - or the stagnation
-bottom left corner - equilibrium points (see 5). We can very much see the
frontier between the two basins of attraction, given by the stable manifold as-
sociated to the deflationary state (which is a saddle under adaptive learning).
Under rational expectation, above the manifold the Taylor condition -red line- is
respected and all expectation pairs converge to the target, below, the conditions
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Figure 5: Learning Stability of the social learning
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are violated, and we obtain convergence to the stagnation state(see figures 4).7
Those results are in line with previous stability results under adaptive learning,
and determinacy results under rational expectations . Yet, under this initial-
ization setup where there is no real shocks we can see that our model is able to
violate for some time Taylor condition - on the top left zone of the diagram -and
get back to equilibrium. According to our simulation this result is more a con-
sequence of diagram initialization setup because under real shock the model’s
dynamics does not allow this situation - e.g strong deflationary expansion.

6 Results
One of the most topical issues regarding RE NK models with multiple steady
state and non-linearities is how to compute regime switches and the correspond-
ing ZLB duration. Iacoviello and Luca (2014) develop a way to achieve realistic
values by computing it through an algorithm that estimates rather than analyt-
ically computing duration of constraint binding within the policy function. One
of the purposes of the social learning model is to demonstrate how coordination
issues and selection mechanisms can increase the persistence of shock. To assess
the efficiency of policy we developed a welfare policy function in this fashion :

Lt = −(πt − Et−1πt)2 − λy2 (30)

with λ = κ/θ such as in Woodford (2002).

6.1 Impulse response functions
After observing the stability properties of the model in the simulated economies,
we investigate the dynamic properties and responses of the model to natural rate
and expectation shocks relative to the rational expectation benchmark.

One positive demand real shock shows that our model responds correctly
to this kind of impulse. One striking result is that if aggregate expectations
follow the shock, the a constant is positively correlated as if an exogenous shock
changes steady states values or structural values of the economy. That phe-
nomenon explains the higher shock persistence of this model (see figures 6.1
and 6.1). The intuition behind those phenomena is that agent struggle to iden-
tify the underlying disturbance and could perceived an exogenous shock as a
structural change -i.e change in the SS value.

One important feature of this model is that we can shock directly model
expectations in the form of higher or lower inflation and output forecasts. This
means that “news” can trigger by themselves real effect on the economy. Lower
output expectations generate depressive episodes and higher inflation expecta-
tions can push output gap up. Yet, because of identification issue during the
estimation part those shocks are quiet challenging to use and we refrained the
use of those shocks only to the forward-guidance part.

7In every IRF, blue line is the median of Monte-Carlo results, grey lines are the upper and
lowers quartiles and green, yellow and red lines the three steady states.
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Figure 6: IRF of the model under a demand shock εg1 = −0.05 (blue line SL,
grey band 95% confidence interval, black line RE) 1/2
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In our model exogenous shocks -i.e real shocks- can also lead to self-sustained
recession paths and deflationary spirals. When shocks are large enough, coordi-
nation failures, i.e. the failure of agents to coordinate their expectations on the
socially desirable targeted steady state, appear when the Taylor condition is vi-
olated for to long. The model deviate from the targeted stable equilibrium and
falls into the liquidity trap for a very long term. In fact it seems that inflation
expectations become unanchored. In fact, coordination failure pushes the model
into a longer depression. Indeed, if deflation accelerates for a limited number of
period the social learning will start discarding positive or zero a1 and a2 coef-
ficients and even after the end of the shocks persistence, the model could hold
deflation. Thus, contrary to the RE homogeneous agent model, where Taylor
condition should be broken to generate indeterminacy, social learning leads to
lower long term stability and more flexible short term path.

6.2 Forward Guidance treatment
Look at price dispersion in the NKPC in Woodford, get somehow appear the
variance of expectations between agents (cross-sectional) and motivate the pol-
icy scenarios by the need of coordinating inflation expectations to avoid hetero-
geneous expectations, and the associated price dispersion loss.

Contrary to rational expectation DSGE where an expected variable is equal
to the variable at the next period plus model respons to the autocorrelation of
the stochastic perturbation, our model separates those variables. Thus, we can
submit those expectations to policy treatment. Our explicit modeling of the
expectation formation process allows us to separate the model reactions from
the expectations reaction in face of policy shocks. The question is thus how
policy treatments can steer back expectations to the targeted steady state?

6.2.1 Signaling the MSV solution

Here, mention somewhere that we model a continuous injection that is costless,
but in reality of course, not a panacea, as communicating a solution that is not
credible may be costly in terms of credibility for the central bank.

Our second treatment can be described as delphic forward guidance in the
sense that the central bank signals the MSV RE solution to the agents (see
figure 2), see also Marzioni (2014) and Goy et al. (2016). The CB forecast is
thus describe as follow :

Ezet+1,CB = aCB + cCBρg ĝt + dCBρuût (31)

with if φy(a1 + c1ρ
g ĝt + d1ρ

uût) + φπ(a2 + c2ρ
g ĝt + d2ρ

uût) > −r :
aCB = a

cCB = c

dCB = d

(32)
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if φy(a1 + c1ρ
g ĝt + d1ρ

uût) + φπ(a2 + c2ρ
g ĝt + d2ρ

uût) < −r:
aCB = aZLB

cCB = cZLB

dCB = dZLB
(33)

and if a2 + c2ρ
g ĝt + d2ρ

uût < −r:
aCB = a

cCB = c

dCB = d

(34)

We assume that there is a fixed proportion 0 < ψ < 1 of receivers among our
agents. Those agents do not proceed to mutation but proceed through the
tournament so that the social learning algorithm endogenously spreads out or
dismisses those forecasts, depending on their relatives performances (see 3.3).
This Forward Guidance treatment can be envisioned as a public signal send to
some agent. Either agent are listening the CB news or the just have an intuition
on the future state of the economy.

Interestingly, this treatment is very efficient in steering faster agents’ be-
liefs towards the targeted state, even with a quite small proportion of initial
receivers (e.g 5%) (see figures 6.2.1 and 6.2.1. Yet we discovered a trade-off
between anchorage and Welfare and Dispersion of inflation forecast. This is
happening because forward guidance can be overly pessimistic at the resolution
of the shock. Moreover, the CB forecast could be way off the average forecast
thus creating coordination issues. Thus, our forward guidance treatment can be
suitable on long run for macro-economic stabilization but can generate signifi-
cation welfare losses (see 4, 5 ahd 6) Yet when the shocks are too important
(i.e beyond the Taylor conditions) or when the number of believers is significant
this treatment tend to increase the magnitude of the shocks in the short run
and the instability of the model in the long run.
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Figure 8: IRF of the model under a demand shock εg1 = −0.05 and forward
guidance treatment (blue line SL, grey band 95% confidence interval,red line
ψ = 0.1, green line ψ = 0.05) 1/2
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ψ�ĝ1 ĝ1 = −.005 ĝ1 = −.01 ĝ1 = −.015 ĝ1 = −.02 ĝ1 = −.025 ĝ1 = −.03 ĝ1 = −.035 ĝ1 = −.04 ĝ1 = −.045 ĝ1 = −.05 ĝ1 = −.055 ĝ1 = −.06

ψ = .00 .576 .6 .691 .761 .824 .881 0.93 .968 1 1.03 1.06 1.07
ψ = .01 .626 .793* .983** 1.14*** 1.26*** 1.6*** 1.71*** 1.94*** 2.04*** 2.27*** 2.35*** 2.56***
ψ = .02 .657 .876** 1.09*** 1.28*** 1.42*** 1.84*** 2.13*** 2.5*** 2.4*** 2.89*** 3*** 3.3***
ψ = .03 .676* .933*** 1.17*** 1.35*** 1.51*** 2.02*** 2.38*** 2.77*** 2.58*** 3.29*** 3.42*** 3.78***
ψ = .04 .686* .963*** 1.21*** 1.40*** 1.56*** 2.11*** 2.53*** 2.96*** 2.91*** 3.56*** 3.7*** 4.08***
ψ = .05 .691* .978*** 1.23*** 1.42*** 1.57*** 2.17*** 2.64*** 3.12*** 3.12*** 3.76*** 3.95*** 4.40***
ψ = .06 .692* .982*** 1.22*** 1.41*** 1.56*** 2.26*** 2.75*** 3.26*** 3.29*** 3.92*** 4.08*** 4.56***
ψ = .07 .69* .981*** 1.21*** 1.41*** 1.55*** 2.26*** 2.81*** 3.36*** 3.43*** 4.05*** 4.23*** 4.74***
ψ = .08 .677* .971*** 1.18*** 1.39*** 1.52*** 2.27*** 2.83*** 3.37*** 3.52*** 4.12*** 4.29*** 4.84***
ψ = .9 .669 .959*** 1.16*** 1.37*** 1.48*** 2.26*** 2.84*** 3.41*** 3.53*** 4.17*** 4.35*** 4.94***
ψ = .10 .656 .941*** 1.14*** 1.34*** 1.46*** 2.39*** 2.88*** 3.49*** 3.58*** 4.29*** 4.48*** 5.08***
ψ = .11 .643 .924*** 1.11*** 1.31*** 1.42*** 2.37*** 2.88*** 3.52*** 3.66*** 4.39*** 4.58*** 5.23***
ψ = .12 .631 .906*** 1.09*** 1.28*** 1.38*** 2.36*** 2.89*** 3.55*** 3.73*** 4.40*** 4.6*** 5.28***
ψ = .13 .617 .88** 1.05*** 1.25*** 1.35*** 2.34*** 2.87*** 3.55*** 3.74*** 4.45*** 4.65*** 5.35***
ψ = .14 .606 .861** 1.02*** 1.22*** 1.31*** 2.33*** 2.88*** 3.59*** 3.77*** 4.50*** 4.69*** 5.43***
ψ = .15 .592 .84** .992*** 1.18*** 1.27*** 2.33*** 2.86*** 3.64*** 3.84*** 4.51*** 4.72*** 5.47***
ψ = .16 .58 .82** .962** 1.15*** 1.23*** 2.29*** 2.83*** 3.70*** 3.89*** 4.54*** 4.74*** 5.54***
ψ = .17 .57 .793* .938** 1.12*** 1.19*** 2.25*** 2.95*** 3.71*** 3.91*** 4.57*** 4.77*** 5.69***
ψ = .18 .558 .75 .906* 1.07** 1.16** 2.22*** 2.92*** 3.70*** 3.91*** 4.71*** 4.94*** 5.74***
ψ = .19 .551 .75 .892* 1.03** 1.13** 2.20*** 2.92*** 3.70*** 3.90*** 4.72*** 4.96*** 5.79***
ψ = .2 .546 .73 .882 1.01** 1.11** 2.19*** 2.92*** 3.71*** 3.92*** 4.76*** 4.99*** 5.84***

Table 4: Average price dispersion on 80 periods under different policy experiment scale ∆104
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ψ�ĝ1 ĝ1 = −.005 ĝ1 = −.01 ĝ1 = −.015 ĝ1 = −.02 ĝ1 = −.025 ĝ1 = −.03 ĝ1 = −.035 ĝ1 = −.04 ĝ1 = −.045 ĝ1 = −.05 ĝ1 = −.055 ĝ1 = −.06

ψ = 0 78 100 101 102 103 104 105 106 107 108 109 109
ψ = .01 72 94 99 101 101 103 104 105 105 106 107 107
ψ = .02 63 90* 95 98 100 100 102 103 104 105 105* 106
ψ = .03 51 84*** 92** 95* 97* 98** 100** 101** 102** 102*** 103*** 104**
ψ = .04 47 80*** 87*** 91*** 93*** 96*** 97*** 99*** 99*** 101*** 101*** 102***
ψ = .05 40 74*** 83*** 87*** 90*** 93*** 95*** 97*** 97*** 98*** 99*** 100***
ψ = .06 40 69*** 79*** 83*** 86*** 90*** 92*** 93*** 95*** 95*** 96*** 97***
ψ = .07 32 64*** 74*** 79*** 83*** 86*** 89*** 91*** 91*** 93*** 93*** 94***
ψ = .08 32 59*** 70*** 75*** 79*** 83*** 85*** 87*** 88*** 90*** 90*** 91***
ψ = .09 26 54*** 65*** 71*** 75*** 79*** 82*** 84*** 84*** 86*** 87*** 88***
ψ = .1 22 49*** 61*** 67*** 70*** 75*** 78*** 80*** 81*** 83*** 83*** 85***
ψ = .11 18 45*** 57*** 63*** 67*** 72*** 75*** 76*** 78*** 79*** 80*** 82***
ψ = .12 16 42*** 53*** 59*** 63*** 68*** 71*** 73*** 74*** 76*** 77*** 78***
ψ = .13 15 38*** 49*** 56*** 59*** 64*** 67*** 70*** 71*** 72*** 73*** 75***
ψ = .14 14 35*** 45*** 52*** 57*** 61*** 64*** 66*** 67*** 69*** 70*** 72***
ψ = .15 13 33*** 43*** 49*** 53*** 58*** 61*** 63*** 64*** 66*** 67*** 68***
ψ = .16 12 31*** 40*** 46*** 50*** 55*** 57*** 59*** 61*** 63*** 64*** 65***
ψ = .17 12 28*** 37*** 43*** 47*** 52*** 54*** 57*** 58*** 60*** 61*** 62***
ψ = .18 12 27*** 35*** 40*** 44*** 49*** 52*** 54*** 55*** 57*** 58*** 59***
ψ = .19 12 25*** 33*** 38*** 42*** 46*** 49*** 51*** 52*** 54*** 55*** 57***
ψ = .2 12 23*** 31*** 37*** 40*** 43*** 46*** 48*** 49*** 51*** 52*** 54***

Table 5: Time for expectations to reach back the inflation target under different policy experiment
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ψ�ĝ1 ĝ1 = −.005 ĝ1 = −.01 ĝ1 = −.015 ĝ1 = −.02 ĝ1 = −.025 ĝ1 = −.03 ĝ1 = −.035 ĝ1 = −.04 ĝ1 = −.045 ĝ1 = −.05 ĝ1 = −.055 ĝ1 = −.06

ψ = 0 -.028 -.116 -.267 -.478 -.749 -1.1 -1.52 -2 -2.55 -3.16 -3.84 -4.57
ψ = .01 -.027 -.1141 -.263 -.472 -.739 -1.1 -1.52 -2.01 -2.56 -3.18 -3.86 -4.61
ψ = .02 -.027 -.112 -.256 -.464 -.727 -1.1 -1.52 -2.02 -2.57 -3.2 -3.87 -4.63
ψ = .03 -.026 -.11 -.255 -.475 -.718 -1.1 -1.53 -2.03 -2.58 -3.21 -3.9 -4.66
ψ = .04 -.026 -.109 -.253 -.454 -.712 -1.11 -1.54 -2.04 -2.60 -3.24 -3.96 -4.70
ψ = .05 -.026 -.108 -.25 -.45 -.705 -1.13 -1.56 -2.07 -2.63 -3.27 -4.02 -4.75
ψ = .06 -.026 -.107 -.248 -.446 -.7 -1.15 -1.58 -2.11 -2.66 -3.33 -4.06 -4.82
ψ = .07 -.026 -.106 -.247 -.444 -.697 -1.17 -1.60 -2.13 -2.7 -3.36 -4.12 -4.87
ψ = .08 -.026 -.105 -.245 -.441 -.693 -1.19 -1.62 -2.16 -2.73 -3.42 -4.15 -4.91
ψ = .09 -.025 -.105 -.243 -.438 -.688 -1.2 -1.64 -2.18 -2.75 -3.44 -4.23 -4.93
ψ = .1 -.025 -.105 -.242 -.436 -.684 -1.24 -1.68 -2.23 -2.82 -3.51 -4.25 -4.97
ψ = .11 -.025 -.104 -.241 -.434 -.682 -1.28* -1.71 -2.27 -2.87 -3.57 -4.28 -5
ψ = .12 -.025 -.104 -.24 -.432 -.679 -1.31* -1.74 -2.3* -2.9 -3.62* -4.32* -5.03
ψ = .13 -.025 -.103 -.239 -.431 -.676 -1.34** -1.178* -2.36** -2.96* -3.69* -4.35* -5.07
ψ = .14 -.025 -.103 -.238 -.43 -.673 -1.39*** -1.83** -2.41** -3.03** -3.74** -4.37* -5.1
ψ = .15 -.025 -.103 -.238 -.426 -.67 -1.41*** -1.87** -2.46** -3.07** -3.76** -4.41* -5.13
ψ = .16 -.025 -.102 -.237 -.424 -.668 -1.45*** -1.9*** -2.51*** -3.14** -3.79** -4.44* -5.18
ψ = .17 -.025 -.102 -.236 -.422 -.6643 -1.49*** -1.96*** -2.56*** -3.19*** -3.82** -4.46* -5.21*
ψ = .18 -.025 -.102 -.234 -.421 -.662 -1.56*** -2.03** -2.64*** -3.24*** -3.85** -4.47* -5.25*
ψ = .19 -.025 -.102 -.233 -.42 -.66 -1.62*** -2.09*** -2.71*** -3.27*** -3.87** -4.49* -5.29
ψ = .2 -.025 -.102 -.232 -.419 -.658 -1.69*** -2.15*** -2.78*** -3.31*** -3.91*** -4.55** -5.35**

Table 6: Average welfare loss on 80 periods under different policy experiment  L10−6
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6.2.2 Signaling a policy commitment: the “whatever it takes” ex-
periment

Following previous theoretical and empirical works by Black (1995), Kulish et al.
(2014) and Bauer and Rudebusch (2016), forward guidance at the ZLB could
be considered as a way to decrease the interest rate under 0%. In fact, forward
guidance can be envisioned as long term commitment to flatten and even render
negative the rate curve through the risk and money supply channels. This
enables the lending conditions to be eased and the de facto riskless rate to
go below the ZLB. This de facto rate has been conceptualized as the “shadow
rate”. For instance, Kulish et al. (2014) and Bauer and Rudebusch (2016),
thanks to a Bayesian DSGE model Ãă la Smets and Wouters (2007b) or a
Bayesian VAR model, estimate that the forward guidance of Federal Reserve
has generated a “shadow” interest rate of about −3% between 2009 to 2013.
In this part, we develop a shadow interest setup without modifying the actual
interest determination and modifying the ZLB constraint. We instead break the
perfect foresight equality of the MSV central bank signal that we can describe as
the shadow rate of the monetary policy. Hence, the shadow/perceived interest
rate is now different from the actual rate.

The forward-guidance system is based on the solution signaled by the central
bank and can be described in this fashion :

Ezet+1,CB = aWIT + cWIT ρg ĝt + dWIT ρuût (35)

with: 
aWIT = a

cWIT = c

dWIT = d

(36)

Without changing any fundamentals of the model - namely the ALM, we im-
plement an Odysean forward guidance treatment. Indeed, we delete the ZLB
constraint in the MSV solution signaled by the central bank. The intuition is
that central bankers signal that the will do “whatever it takes” to fulfill the
Taylor principle. In a sense, this type of forward guidance is a pure Odysean
commitment from the central bankers that they will solve any problem regard-
ing the ZLB with quantitative easing, maturity transformation, assets swap etc.
to flatten the yield curve. In theory, if the central bank is perfectly credible,
our model would be totally stable whatever shock will happen. The treatment
is efficient and manage to anchor expectations efficiently (see figures 6.2.2 and
6.2.2). On the short run, the treatment under credibility assessment does not
yield to important perturbation and thus forecasts dispersion and welfare losses.
Yet, on the long run this ”whatever it takes” policy increases the volatility of
the model.
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Figure 10: IRF of the model under a demand shock εg1 = −0.05 under different
treatments of odyssean forward guidance (blue line SL, grey band 95% confi-
dence interval,red line ψ = 0.1 Delphic FG, green line Odysean FG ψ = 0.1)
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7 Conclusion
We introduce heterogeneous expectations through social learning in a NK model
with multiple steady states. Heterogeneous expectations potentially undermine
the effects of forward-guidance by the coordination dynamics implied by het-
erogeneity. Our model exhibits persistence at the ZLB and could fall into a
liquidity trap state, which is a feature that standard RE NK models cannot
easily produce.

Our model exhibits two interesting properties – namely non stationary and
bounded rationality – that make forward-guidance potentially relevant. We ex-
periment with so-called Delphic forward guidance in the form of central bank’s
signals about the MSV solution. Under full credibility, this policy treatment is
very efficient at anchoring the expectations back on the socially efficient target
and not efficient in term of welfare loss and forecast dispersion. We further
implement so-called Odysean forward guidance in the form of an optimal com-
mitment from the central bank to fulfill the Taylor conditions. This policy
experiment enables us to lift the welfare loss and forecast dispersion constrain.

Coordination of heterogeneous expectations is a crucial issue for forward
guidance and expectation management by central bank, and this feature is well
captured by the model that we have developed in this paper thanks to the beauty
contest property of forecasts. We also account for the well-known trade-off be-
tween credibility and transparency, that is even more salient in crisis times, once
the economy evolves or is at risk of evolving far away from the central bank’s
objectives: communication may steer expectations towards the desirable state,
but may also lock them into the stagnation state if the agents do not judge
the central bank’s information credible and do not incorporate it into their fore-
casts. Further attempts from the central bank to influence expectations through
communication may turn out pointless if the credibility of their announcement
has been lost. In our model, it seems that even communicating to agent the
solution is already a powerful policy tool.
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Live in a Liquidity Trap. 2017.

Guido Ascari and Lorenza Rossi. Trend In âĂą ation , Non-linearities and Firms
Price-Setting : Rotemberg vs . Calvo. 2009.

Michael D. Bauer and Glenn D. Rudebusch. Monetary Policy Expectations
at the Zero Lower Bound. 48(7):1439–1465, 2016. ISSN 1556-5068. doi:
10.2139/ssrn.2334540.

Jess Benhabib, Stephanie Schmitt-Grohé, and Martin Uribe. Monetary policy
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