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Abstract

A simple asset pricing model with endogenous participation can match key volatility

moments when agents adaptively learn about both the risk and the return of stocks.

With learning about risk, excess volatility of prices is driven by fluctuations in the

participation rate that arise because agents’ risk estimates vary with prices.We find

that learning about risk is quantitatively more important than learning about returns.

A calibrated model can jointly match the mean participation rate, the volatility of

participation rates, and explain 25% of the excess volatility of stock prices observed in

U.S. data.

Keywords: stock market participation, adaptive learning, excess volatility, risk, as-

set pricing

1 Introduction

In a seminal paper, Mankiw and Zeldes (1991) report that in 1984 only 27.6% of

households in the PSID participated in the stock market. This “participation puz-

zle” is at odds with standard assumptions in asset pricing models. Subsequent studies

demonstrate that limited participation is robust across time periods, asset classes,

direct/indirect holdings, and countries (Bertaut and Starr-McCluer 2002, Guiso and

Jappelli 2002, Campbell 2006).

This paper focuses on the dynamic relationship between participation and asset
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Year Participation Rate (%)

1995 20.7

1998 27.1

2000 27.1

2002 29.4

2004 26.4

2005 25.1

2009 21.8

2010 20.4

2011 19.6

2013 20.0

Table 1. Stock Market Participation Rates from 1995 - 2013. Data was extracted from the

Survey of Income and Program Participation.1

prices. Table 1, taken from the Survey of Income and Program Participation (SIPP),

documents fluctuations in participation rates over time with a low of 19.6% and a high

of 29.4%. More recently, Arrondel et al (2014) provide structural econometric evidence

of a causal relationship between expected returns and participation rates. We propose

a theory of endogenous fluctuations in participation rates and demonstrates that it can

be an important driver of stock price volatility.

We present a mean-variance asset pricing model with two key departures: a costly

participation margin and imperfect knowledge about the stochastic processes driving

prices. Participation is costly and agents choose to participate in the stock market by

balancing entry costs against the risk-adjusted expected return from participating. We

relax the rational expectations (RE) assumption and instead assume that agents be-

have like good econometricians who formulate and estimate a well-specified forecasting

model for future stock prices. A key assumption is that agents have to also estimate

the risk, i.e. the conditional variance of returns. Learning about the risk and return

provide two different feedback mechanisms that contribute to price fluctuations with

learning about risk being quantitatively more important. We find that with learning,

changes in agents’ risk estimates lead to large fluctuations in the participation rate

which in turn lead to large fluctuations in the price.

To introduce endogenous fluctuations in participation, we implement a cost func-

tion which captures features beyond fixed participation costs while keeping the model

1In particular, the values are taken from official data tables produced by the U.S. Census which are

only periodically documented. These rates include the percentage of households in the survey that stated

ownership in either stock or mutual fund holdings. We also find a similar pattern when adding retirement

accounts such as IRA and 401K holdings. Similar patterns are found in the SCF and PSID.
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tractable. This approach is motivated by recent empirical evidence revealing costs to

participate in the stock market that go beyond fixed entry costs such as financial aware-

ness, financial literacy, and other cognition costs (Guiso and Sodini 2013). Similar to

labor-leisure decisions, we model participation as the result of costly effort. Individuals

who exert more effort are more likely to enter the stock market.

It is well known that asset pricing models with RE have difficulty generating excess

volatility (Timmermann 1993). RE requires subjective beliefs to align with the objec-

tive measured probability distribution that is implied by those beliefs. Therefore with

RE, beliefs disappear as an independent force driving prices, volatility, and participa-

tion. We argue that belief-driven learning dynamics are key in explaining the interplay

between participation and stock price volatility. Hence we take a step down from RE

and implement an adaptive learning rule.

We first characterize the steady-state equilibrium and do comparative statics which

give insights on participation without learning. We find that limited participation low-

ers the steady-state price because fewer agents participating in the market corresponds

to lower market demand for the asset. In the steady-state, changes in the structural

parameters shift both the asset demand and participation decision. Therefore, the

participation decision can either shift in the same direction as the asset demand, am-

plifying the effect on prices, or in the opposite direction and reduce the effect. For

instance, a decrease in the risk-free rate increases the demand for the risky asset which

increases the price but also increases the participation rate which leads to a further

increase in the price.

We then study the learning dynamics while keeping risk constant in order to char-

acterize the learning about returns channel. Along a temporary equilibrium path,

agents exert effort to participate in the stock market, where the level of effort depends

on return expectations. Additionally, participation has a direct effect on asset prices

and returns. When prices increase, expected returns decrease, leading to a decrease in

participation which in turn decreases prices. This feedback loop due to learning about

returns is an important mechanism in our model for explaining limited participation

and excess volatility of stock prices.

The role for learning about risk is motivated by survey responses in Arrondel et al

(2014) who find that 20.7% of nonparticipants did not invest in the stock market due

to the perceived riskiness of stocks. Since risk influences participation, risk itself is

an equilibrium object jointly determined along with prices and returns. We follow the

approach in Branch and Evans (2011) by explicitly calculating the conditional vari-

ance of returns. Risk affects participation because higher risk lowers returns in certain

states and hence lowers the expected utility from participation. An increase in the

subjective risk leads to a decrease in the participation rate which leads to a decrease

in the price. Furthermore a decrease in prices increases realized returns which leads

to an increase in the subjective risk which further decreases the participation rate.
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This process continues until risk estimates are adjusted and the mechanism moves in

the opposite direction. This feedback mechanism due to learning about risk, is key to

generating more volatility in prices than the model with exogenous risk.

We also find that learning about risk is quantitatively more important than learn-

ing about returns. Learning about risk generates larger volatility in participation rates

which directly contributes to larger volatility in prices. Essentially, learning about risk

is more important for volatility because changes in risk have a persistent impact on

prices. There is a self-fulfilling aspect between prices and risk which is amplified by

the participation margin. As agents learn about the risk and subjective risk increases,

participation decreases and prices decrease as well. In this sense, higher risk leads

to persistently lower prices leading to higher price volatility. In contrast, prices and

expected returns have a negative relationship such that higher prices lead to lower ex-

pected returns which lowers participation. Hence with learning about returns, higher

prices are offset by lower expected returns leading to lower persistence in volatility.

1.1 Literature Review

This paper contributes primarily to two literatures. First, to the literature on limited

participation and household finance. There is a large literature on exogenous limited

participation but the first paper to endogenize limited participation is Allen and Gale

(1994) who implement fixed costs in a one-shot asset pricing game. They find that

endogenous participation can increase the volatility of asset prices. This paper is

most similar to Orosel (1998), who models endogenous participation in an overlapping

generations model with fixed costs. Our model differs from theirs by implementing a

variable cost function, which allows us to tractably analyze the dynamics of the model

while also mapping participation rates to the data. Gomes and Michaelides (2005)

and Fagereng et al (2017) implement fixed costs in a life-cycle model and calibrate

it. Models in this strand of the literature focus on matching the cross-section of asset

holdings. In contrast, we focus on aggregate participation and how it jointly impacts

asset prices and expected returns in the time-series.

Second, we contribute to the literature on learning. This paper follows a strand of

literature put forth by Marcet and Sargent (1989) and Evans and Honkapohja (2001)

which relaxes the RE hypothesis and replaces it with an econometric learning rule.

The first paper to analyze learning in an asset pricing model is Timmermann (1993)

who shows that adaptive learning can generate excess volatility. Our environment is

similar to Branch and Evans (2011) who calibrate a mean-variance asset pricing model

where agents also learn about the risk. We differ from their approach by adding a

participation decision and focus on price volatility rather than asset bubbles. More

recently, Nakov and Nuño (2015) calibrate an asset pricing model with learning and

Blanchard-Yaari households. Finally Adam et al (2016) formally test a consumption
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asset pricing model with learning. As far as we know this is the first paper to combine

an asset pricing model with endogenous participation and learning.

2 Model

Time is measured in discrete periods t = 1, 2, ... and there are overlapping generations

of agents who live for 2 periods. All agents have CARA utility functions of the form:

u(c) = −e−ρc, where ρ > 0 is the coefficient of absolute risk aversion. There is one

non-storable consumption good which we take as the numeraire. There are two assets

traded in perfectly competitive markets: a risky Lucas tree and a riskless one-period

bond. Like Lucas (1978), shares underlie firms that produce exogenous stochastic

output of the consumption good. Participation in the risky market requires effort and

none is required in the riskless market. We view the riskless one-period bond as an

analogue to a savings account or a storage technology. In reality, participation in the

bond market also requires effort but the cost is presumably lower. We assume that the

riskless asset gives an exogenous gross return R = 1 + r > 1 of the consumption good

and the supply is infinitely elastic.

The initial old are endowed with S > 0 shares, where each share pays at the

beginning of the period a dividend Dt. Dt follows an exogenous process:

Dt = µ+ εDt

where µ > 0 and εDt is white noise with distribution N(0, σ2
D). The dividend process is

simplistic for technical convenience and to clearly focus on the participation channel.2

After the initial old is endowed with the shares, subsequent S follow an exogenous

process:

St = S + εSt (1)

where εSt is white noise with distribution N(0, σ2
S). The stochastic supply is a proxy

for volatility in asset float where firms create new issues and provide options that are

periodically exercised changing the available supply at a given time. Furthermore, the

impact of asset float is well documented in the literature (Baker and Wurgler 2000).

We follow Branch and Evans (2011) who show that in a similar model, stochastic

variation in the population of young agents can produce shocks in per capita asset

supply. At the beginning of each period, a new generation nt enters the economy,

where nt is an iid random process with an inverse mean of one. Because nt is random,

the per capita asset supply St is also random, and follows the stochastic process in

Equation (1). Each agent lives for two periods, has initial endowment w normalized

2In order to focus on the interactions between learning and participation, we abstract from seriously

modeling dividends and asset supply, both of which are better approximated by persistent or non-stationary

processes.
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to 1, and consumes only in the second period. This is to abstract away from savings

decisions in order to focus entirely on the lifetime portfolio choice and the stock market

entry decision of the young households.

There are costs to participate in the stock market beyond fixed entry costs such

as investing in financial literacy, financial awareness, and other cognition costs (Guiso

and Sodini 2013). We implement a cost function that captures these features while also

keeping the model tractable. Agents can exert up to one unit of effort e. Similar to

labor-leisure decisions, exerting effort is assumed to be costly in terms of utility. Agents

face a variable cost function Φ(e) that is increasing in their effort at a decreasing rate

with Φ(0) = 0, and Φ′(0) = 0.

An iid random variable χ which takes on values 0 and 1 determines the young’s

ability to participate. When χ = 1, the young can participate in the stock market, else

they are unable to enter. Furthermore, the young can influence the likelihood of χ by

exerting effort. If the agent exerts e = 1, then he enters the market with certainty.

Similarly, if the agent exerts e = 1
2 , then he enters the market with probability 1

2 .

Implicitly, agents who exert more effort are more likely to increase their financial

awareness or invest in financial literacy and hence are more likely to enter the stock

market.

Our modeling approach is similar to employment lotteries in labor models following

a technique pioneered by Rogerson (1988). Since entering the stock market is an

indivisible choice, households can improve their welfare by drawing lotteries amongst

themselves and enter the market probabilistically. A natural interpretation, following

Sargent and Ljungqvist (2011), is that this formulation is equivalent to choosing a

portion of your lifetime in which to enter the stock market. Hence e can alternatively

be interpreted as the fraction of an agent’s life in which they would like to participate

in the stock market.3 Because of the Law of Large Numbers, e also corresponds to the

aggregate participation rate.

3 Equilibrium

3.1 Portfolio Choice

Consumption depends on whether the household is a stock market participant. Hence

ct = cχt, where cχt is state-contingent consumption. Let c0t be risk-free consumption

and c1t be risky consumption. Then agents maximize the following program:

maximize
xt(χ),et

(1− et)u(c0t) + etEtu(c1t)− Φ(et)

3Their exact interpretation is in terms of the labor market in which agents choose their career lengths.

Alternatively, one can imagine agents having a distribution of fixed entry costs and the representative agent

being a stand-in for the heterogeneity. This interpretation is similar in spirit to Orosel (1998).
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subject to cχt =

R+ xt(pt+1 +Dt+1 −Rpt) if χ = 1

R if χ = 0
(2)

where xt is the asset holding decision and pt is the price of the risky asset. Equation (2)

is the agent’s budget constraint. Agents allocate their endowment between the risky

asset and the one-period bond. Agents choose some portfolio xt and effort level et to

maximize their lifetime utility. Furthermore, agents also assume that the payoffs, pt+1

+ Dt+1, are normally distributed, which implies c1t is also normally distributed. Since

the utility is CARA, we arrive at the following first-order conditions:

xt =
Et(pt+1 +Dt+1)−Rpt

ρσ2
p

(3)

Φ′(et) = max{Etu(c1t)− u(c0t), 0} (4)

where σ2
p ≡ V art(pt+1 + Dt+1) is the conditional variance of returns, i.e. the agents’

subjective measure of risk. For now σ2
p is treated as a constant but will be made

endogenous in subsequent sections. The inverse function is:

et = min{Φ′−1[Etu(c1t)− u(c0t)], 1} (5)

Equation (3) is the standard mean-variance asset demand function which is downward

sloping in the price and Equation (5) is the participation decision. Hence, the agent’s

optimal effort level depends on equating the expected utility difference of entering and

not entering with the marginal cost of entry.

3.2 Steady-State

To better understand the participation decision, it is illustrative to analyze the steady-

state. We now assume a particular form for the cost function:

Φ(et) =
1

2A
e2
t , where A > 0 is some technology or efficiency parameter.

Then the inverse of the derivative is:

et = Φ′−1(y) = Ay, where y ≥ 0 is some input.

Taking the first-order condition we now get:

et = min{AΓ(pt), 1} (6)

where:

Γ(pt) = e−ρR − e
−ρR− [Et(pt+1+Dt+1)−Rpt]

2

2σ2
p (7)
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Equation (7) follows from the transformation of an exponential function with respect

to normal random variables and is derived in the appendix. Γ(p) is the expected utility

difference between the two states which can be interpreted as the expected excess utility

return of entering the stock market. The market-clearing condition is as follows:

etxt = St

Once we impose market-clearing, we get the following pricing equation:

pt = R−1

[
Et(pt+1 +Dt+1)− St

et
ρσ2

p

]
(8)

This is the same as the standard mean-variance pricing equation except now the price

also depends on et, where again, et is the participation rate. When et = 1, the model

collapses to the standard mean-variance case. Otherwise, when et < 1, the limited

participation steady-state price will be lower than the corresponding full participation

price. Since market-clearing implies prices must be positive, the participation rate et

will always be positive in equilibrium and hence Equation (8) is well-defined.

There are two propagation mechanisms with the addition of the participation de-

cision. The first mechanism is through Etpt+1. In the standard model, Etpt+1 affects

the price directly, but in our model it also impacts it indirectly through et since the

participation decision now depends on expected prices. Second, as et increases, pt

increases. In particular, lower participation rates lead to lower prices and higher par-

ticipation rates lead to higher prices. This means that increases in expected prices

further increase the price through the participation channel. Thus we can view et as

an amplification mechanism, where changes in participation rates are demand shocks.

These two effects interact nonlinearly. In order to build intuition about the par-

ticipation channel, we look at the steady-state equilibrium. We find the participation

channel can act as both an amplification and dampening mechanism. For instance, an

increase in R decreases both the price through the asset demand and through the par-

ticipation channel. In contrast, an increase in the risk σ2
p decreases the price through

the asset demand but increases it through the participation channel.

We characterize the steady-state equilibrium where St = S and pt+1 = pt = p̄. Once

we solve for the steady-state we get the following form:

x̄ =
µ− (R− 1)p̄

ρσ2
p

Plugging in for the cost function we get the following participation equation:

ē = min{AΓ(p̄), 1}

where:

Γ(p̄) = e−ρR − e
−ρR− [µ−(R−1)p̄]2

2σ2
p
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p

e

inverse asset demand

participation

Figure 1. Steady-state Equilibrium.

Proposition 1. There exists a unique steady-state equilibrium.

Proofs are provided in the appendix. Figure 1 depicts Proposition 1 graphically for

a set of parameters. Given that the steady-state equilibrium exists and is unique, we

derive the expression for the steady-state price. We also compare it to the standard

mean-variance case. The steady-state equation for the price in the standard mean-

variance model is as follows:

p̄ =
µ− Sρσ2

p

R− 1
(9)

The steady-state equation for our model is:

p̄ =
µ− S

ē ρσ
2
p

R− 1
(10)

where:

ē = min{AΓ(p̄), 1}

When ē = 1, our model again collapses to the full participation case. Since ē is

decreasing in p̄, our steady-state price will be lower than the benchmark. We graph

Equations (9) and (10) in Figure 2 to describe the relationship between the two models.

In Figure 2, we see that the full participation model has a higher steady-state price

than with limited participation. Another thing to note is that changes in the structural

parameters shift both functions so the magnitude of the change is different than the

benchmark. Moreover, we can plug Equation (10) into the steady-state participation

function to find ē as an implicit function of the fundamentals:

ē = min{Ae−ρR −Ae−ρR−
S2ρ2σ2

p

2ē2 , 1}

We now sign the derivatives for the steady-state participation and pricing functions.

Proposition 2. For ē < 1, the derivative signs for steady-state participation are as

follows: ∂ē
∂R < 0, ∂ē

∂µ = 0, ∂ē
∂A > 0, ∂ē

∂σ2
p
> 0, and ∂ē

∂ρ is indeterminate.
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p

e

inverse asset demand

participation

full participation

Figure 2. Steady-state Equilibrium: Limited and Full Participation.

Proposition 3. The derivative signs for steady-state price are as follows: ∂p̄
∂R < 0,

∂p̄
∂µ > 0, ∂p̄

∂A > 0, ∂p̄
∂σ2
p
< 0, and ∂p̄

∂ρ is indeterminate.

With endogenous participation, the participation and asset demand functions need

not move in the same direction. For instance, when dividends µ increase, prices in-

crease because agents increase their asset demand but the steady-state participation

rate is unchanged. In Equation (10), we see before the substitution that steady-state

participation is a function of µ. Nevertheless the increase in µ increases participation

but this effect is exactly offset by the increase in prices. When the interest rate R in-

creases, agents lower their asset holdings which decreases the price. They also decrease

participation since the risk-free rate now gives a higher return which decreases their

expected utility gain from investing, further decreasing the price. Next, an increase

in the cost parameter A lowers the cost of participating, which increases participation

and increases the price.

Furthermore, when the risk σ2
p increases, agents lower their asset holdings which

lowers the price but their participation rate increases. Similar to the change in µ,

there are counter-balancing effects and the intuition is as follows. For the individual

agent, participation is decreasing in σ2
p because it decreases their expected utility gain

from investing. Participation is also increasing as steady-state price goes down. In

equilibrium, the price effect dominates and steady-state participation is increasing in

σ2
p. Finally, when agents become more risk averse, they decrease their asset holdings

and price decreases. The participation decision now has a u-shaped relationship with

respect to ρ. Participation is increasing in ρ up to some threshold value, and then

decreasing afterwards. This threshold depends on the risk-free rate being sufficiently

high. If the risk-free rate is high enough, then participation is increasing in ρ. This is

because in the steady-state, participation is decreasing in prices because higher prices

lower returns. Hence, a change in the price due to the asset demand can be partially

dampened by the participation effect, but the change in prices is indeterminate.
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We now elaborate on the intuition behind the risk σ2
p comparative statics since it

plays a key role in our model. In the steady-state, an increase in σ2
p makes the asset

riskier to hold, but prices become low enough such that the equilibrium level of partici-

pation will be higher. Out of steady-state, the price effect only dominates when Etpt+1

approaches p̄. With learning, the effect of an increase in σ2
p will decrease participation

which will be the main driver of volatility in prices. Hence to understand the dynamic

relationship between risk and participation, it is important to analyze the learning

dynamics.

3.3 Endogenous Risk

We have treated the risk σ2
p as a constant. Importantly, σ2

p is an equilibrium object and

having the agents learn about the risk has important implications. In asset markets

with agents who learn over time, risk plays an important role because the perceived

riskiness of an asset can lead to a lower asset demand that leads to lower prices in future

periods. We argue that endogenizing σ2
p is crucial for understanding asset markets

because we otherwise omit an important feedback mechanism that influences prices

and expectations.

We now endogenize σ2
p ≡ V art(pt+1 +Dt+1). Then:

σ2
p = Et(pt+1 − Etpt+1 +Dt+1 − µ)2

Solving out we have:

σ2
p = Et(−R−1ρσ2

p

εSt+1

ē
+ εDt+1)2

= V art(−R−1ρσ2
p

εSt+1

ē
+ εDt+1)

=
R−2ρ2(σ2

p)
2

ē2
σ2
S + σ2

D

Solving for equilibrium risk σ2
p leads to:

σ2
p =

ē2 ± ē
√
ē2 − 4R−2ρ2σ2

Sσ
2
D

2R−2ρ2σ2
S

(11)

Equation (11) is identical to Branch and Evans (2011) when ē = 1. We see now σ2
p is

determined by fundamentals. Importantly, the standard deviation of supply, σ2
S now

influences the risk since agents consider the effect of the volatility of shares on the

volatility of returns. There are also two solutions to Equation (11) which correspond

to low and high risk steady-states. Branch and Evans (2011) show that the low risk

steady-state is unstable under learning. We find a similar result with our numerical

analysis and hence focus on the low risk steady-state as well.

Moreover we see that both ē and σ2
p are determined jointly in equilibrium. Unfor-

tunately, because ē and σ2
p have no closed form, we are unable to provide analytical
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solutions for the case with endogenous risk. Instead, we rely on numerical analysis

under learning.

4 Asset Pricing Dynamics with Learning

Because the stochastic model is a complicated non-linear rational expectations equa-

tion, it is not possible to characterize the full set of rational expectations equilibria

(REE). However, since the unique steady-state is locally determinate, we are able to

solve for one type of REE, the noisy steady-state REE. The noisy steady-state REE is

a non-linear REE where the equilibrium path is a sequence of noisy deviations around

the steady-state. We characterize the noisy steady-state REE and then analyze its

stability under learning. We do this by first taking the risk σ2
p as exogenous to clearly

understand the dynamic properties of the participation decision. We then analyze the

numerical properties when σ2
p is endogenous.

4.1 Rational Expectations Equilibrium

We start by characterizing the noisy steady-state REE with exogenous risk. The key

equation in the model is the following expectational difference equation:

pt = R−1

[
Etpt+1 + µ− St

et
ρσ2

p

]
(12)

The noisy steady-state is characterized by a function p(εSt ) that solves Equation (12).

Then the noisy steady-state takes the following form:

p(εSt ) = R−1

[
Etp(ε

S
t+1) + µ− S

e(Etp(εSt+1), p(εSt ))
ρσ2

p −
εSt

e(Etp(εSt+1), p(εSt ))
ρσ2

p

]
(13)

where:

e = min {Ae−ρR −Ae
−ρR− [Etp(εSt+1)+µ−Rp(εSt )]

2

2σ2
p , 1} (14)

Plugging Equation (13) into Equation (14) we get:

e(εSt ) = min{Ae−ρR −Ae
−ρR−

[
S

e(εSt )
ρσ2
p+

εSt
e(εSt )

ρσ2
p

]2

2σ2
p , 1}

Then:

p(εSt ) = R−1

[
Etp(ε

S
t+1) + µ− S

e(εSt )
ρσ2

p −
εSt
e(εSt )

]
(15)

Since εSt is white noise, Etp is a constant and coincides with the nonstochastic steady-

state p̄. Then we get:

pt = R−1[p̄+ µ] + ηt (16)
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where ηt ≡ −R−1
[

S
e(εSt )

ρσ2
p +

εSt
e(εSt )

ρσ2
p

]
. Equation (12) has two noisy steady-state

REE: a fundamentals REE as in Equation (16) and a bubbles REE. As is standard

in the asset pricing literature, we restrict our attention to the fundamentals REE,

which is the unique non-explosive REE. It is also well known that the bubbles REE is

unstable under learning. Moreover, we can see from Equation (15) that supply shocks

are driving the noisy steady-state. We use a proposition by Evans and Honkapohja

(1995) that proves that the noisy steady-state REE exists and is unique.

Proposition 4. If the sequence of shocks {εSt }∞t=0 are such that |εSt | < α with probability

1 for all t and α > 0 is sufficiently small, then there exists a unique noisy steady-state

REE.

Proposition 4 states that Equation (16) is the unique noisy steady-state REE solution

to Equation (12). Here α characterizes the support of the distribution of shocks.

Essentially, the idea of a noisy steady-state REE is that when shocks are iid with

compact support, there exists a stochastic equilibrium in a neighborhood around the

steady-state. Hence we have fully characterized the noisy steady-state REE of our

model and now we implement learning.

In practice, the α parameter which characterizes the support of the distribution

is difficult to pin down. Although Proposition 4 states that the distribution exists,

it provides no analytical solution for α. Thus, when doing our numerical simulation

we use empirical moments and robustness checks to insure that the system is locally

stable.

4.2 Adaptive Learning

Rational expectations (RE) requires a full understanding of the model as well as beliefs

of other agents. In this sense it is a Nash equilibrium, such that coordination between

agents requires strong cognitive and informational assumptions. Instead, many applied

economists estimate econometric forecasting models and adjust the coefficients in light

of new data. Here we adhere to the Cognitive Consistency Principle (Sargent 1993)

which requires agents and econometricians to be on equal footing. In this regard we

want to understand how an agent’s learning mechanism will, in turn, affect the other

endogenous variables. With adaptive learning, agents know the form of the REE but

not the true parameters. We make a small deviation from RE where agents implement

a learning rule and run least-squares regressions on the perceived pricing function.4

The REE of the model is a constant plus a noise. Then the agents are regressing

prices on a constant and they need to keep track of the regression coefficient each

period. We can rewrite the sample average recursively where expectations formation

4We do not assume that agents learn about the dividend process since learning about exogenous processes

provides no feedback. This assumption has no impact on the main results.
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take the following form:

pet+1 = pet + t−1[pt−1 − pet ]

where pet is the subjective expectation of prices formed at time t. This type of learning

is called decreasing-gain learning. With decreasing-gain learning, agents estimate the

sample average of prices and adjust their expectations as new data becomes available.

First thing to note is that pt is assumed to be unknown to the agent during the time

of the forecast. Unlike RE, having beliefs and outcomes be determined simultaneously

with learning is not reasonable. Hence, we have agents forecast both 1-period (pet ) and

2-period (pet+1) ahead prices. For instance, Γ(p) is as follows:

Γ(pt) = e−ρR − e
−ρR−

(pet+1+µ−Rpt)
2

2σ2
p

Then pt is unknown to the agent at time t. If pt is unknown at time t, then the agent’s

best forecast is pet . If agents believe they are in a noisy steady-state and that the REE

is a constant then pt = at−1 +νt where νt is the perceived white noise and at is updated

recursively. Then, evidently pet = at−1 = pet+1. The equation then becomes:

Γ(pt) = e−ρR − e
−ρR−

[(1−R)pet+1+µ]2

2σ2
p

This formulation has the same steady-state as before which allows us to analyze the

learning dynamics with respect to Equation (12). We say that the REE is locally

stable if the model converges to the REE under decreasing-gain learning. We check

the properties of the model with decreasing-gain learning and show that the REE is

in fact stable under learning. Since there is a kink at et = 1 some of the analysis may

not hold at the corner. Hence, we focus on parameterizations that keep et away from

the corner i.e. interior solutions.

4.3 Stability Under Learning

We show analytically that the REE solution is locally stable under learning. To do

this we have to analyze the mapping between the perceived law of motion (PLM)

and actual law of motion (ALM). With econometric learning, agents know the form

of the REE but not the parameters and hence the PLM is the equation that agents

believe generate the observed data. The ALM is the true data-generating process given

the beliefs of the agents. Local stability analysis then amounts to understanding the

functional relationship between these two objects and determining the conditions for

convergence.

Agents believe they are in a noisy steady-state and know the form of the REE.

Then the PLM is:

pt = a+ νt

14



where the conditional expectation, E∗t pt+1 = a. Here the asterisk denotes that the

conditional expectation is not fully rational because the agent does not know the true

parameter value. The ALM is then:

pt = R−1

[
a+ µ− St

et
ρσ2

p

]
et = min{Ae−ρR −Ae

−ρR− [(1−R)a+µ]2

2σ2
p , 1}

Plugging into the learning rule, we get:

at = at−1 + t−1

[
R−1(at−1 + µ− St

et(at−1)
ρσ2

p)− at−1

]
T (a) = R−1

[
at−1 + µ− St

et(at−1)
ρσ2

p

]
where T (a) is a T-map which is a function that maps the agent’s PLM to the ALM.

Evans and Honkapohja (2001) show that the T-map can be used to compute local

stability using a concept called E-stability. The E-stability principle states that locally

stable rest points of the ordinary differential equation (ODE):

da

dt
= T (a)− a

will be attainable under least squares learning. E-stability dictates that the “expecta-

tional” stability of a model depends on the signs of the eigenvalues evaluated at the

rest point of the ODE. If all the eigenvalues have real parts, then the REE is locally

stable. The fixed point of the ODE is:

a =
µ− S

e ρσ
2
p

R− 1

e = min{Ae−ρR −Ae−ρR−
S2ρσ2

p

2e2 , 1}

where (a, e) correspond to the steady-state values. We now state a proposition showing

that the REE is locally stable under decreasing-gain learning.

Proposition 5. If the sequence of shocks {εSt }∞t=0 are such that |εSt | < α with probability

1 for all t and α > 0 is sufficiently small, then the noisy steady-state REE is locally

stable under decreasing-gain learning.

Proposition 5 states that if R−1 is less than 1, then the system is E-stable which is

satisfied in our model. In our model R−1 dictates the strength of the expectational

feedback since higher values lead to larger coefficients on the expectations terms. By

assumption, R−1 is always less than 1 since R is greater than 1. Hence our model is

locally stable under learning.
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Figure 3. Constant-Gain Learning. For 1000 iterations, γ = 0.05, σ2
S = 0.435, A = 1.15,

σ2
p = 0.46, µ = 1, R = 1.007, ρ = 0.45. Left figure is limited participation, right figure is

full participation.

4.4 Constant-Gain

So far we have demonstrated the model properties under decreasing-gain learning. In

our simulations we implement constant-gain learning, where agents weigh each observa-

tion with geometrically declining weights. This is appropriate because our application

is a perpetual learning environment which is best captured by constant-gain learning.

Constant-gain learning differs from decreasing-gain learning in the sense that agents

are not weighing each observation equally. As γ increases, the agent weighs new ev-

idence higher. We justify this for three reasons. First, constant-gain learning is a

robust learning mechanism and is well-represented in the data (Malmendier and Nagel

2011, 2015). Second, when agents are worried about structural changes it is optimal to

place higher weights on recent observations. Finally, constant-gain learning converges

to a distribution around the REE, so we can still use the REE as a benchmark. The

following is the recursive formulation for constant-gain learning:

pet+1 = pet + γ[pt−1 − pet ], where γ ∈ [0, 1].

Constant-gain learning requires a projection facility to ensure prices remain non-

negative and plays a stabilizing role when the risk in endogenized. We implement a

projection facility by endogenizing the shares, where the endogenous supply of shares is

meant to capture asset float drying up when markets perform poorly. With endogenous

supply, shares follow:

St = {min(S,Φpt)}Vt
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where Vt = 1 + εSt and Φ = S
p̄ξ , where p̄ is the steady-state price and ξ is a fraction

between 0 and 1. Here ξ is the fraction of steady-state price at which prices become

endogenous.

Figure 3 depicts the learning about returns simulation with a constant gain and

compares them to the full participation case. As we can see, the model with exogenous

risk generates more volatility than the standard model, which is driven mainly by

the participation channel. The key mechanism when learning about returns is as

follows. When expected returns increase, participation increases. This leads to an

increase in the price, which leads to a decrease in the expected returns which leads to a

decrease in participation. With constant gain learning, this process leads to persistent

fluctuations and adjustments in the learning process which generates more volatility

than the standard case.

4.5 Learning about Risk

We now implement a learning rule where agents also have to learn about the risk σ2
p.

The most natural learning rule for σ2
p is one similar to the rule for prices, where agents

regress the risk on a constant.5 Then the learning rule for σ2
p is:

σ2
p,t+1 = σ2

p,t + γ[(pt − pet−1 + εDt )2 − σ2
p,t]

where εDt is the dividend shock. As before, there are 2 steady-state solutions for σ2
p.

Although Branch and Evans (2011) show the high risk steady-state is unstable under

learning, it is not obvious if their results follow with the addition of a participation

decision. Since ē and σ2
p have no closed-form expression, a complete analytical solution

is unavailable. Nevertheless, we find that the low risk steady-state is numerically stable

under learning while the high risk steady-state is not. Figure 4 depicts the simulation

with learning about risk.

We find that there is an increase in volatility in this simulation and in particular

there is substantially more fluctuation in the participation rate. The main feedback

mechanism with learning about risk is as follows. An increase in the subjective risk

estimate σ2
p leads to a decrease in the participation rate et which feeds back to a de-

crease in the asset price. Furthermore, a decrease in price will increase realized returns

which leads to a temporary decrease in the subjective risk which further decrease the

participation rate. This process continues until risk estimates are adjusted and then

the mechanism moves in the opposite direction. The learning about risk feedback

mechanism is the key driver of volatility in our framework.

5Alternatively, one could use different types of learning rules such as an autoregressive conditional het-

eroskedasticity (ARCH) model. Branch and Evans (2013) analyze this case and the qualitative results are

similar.
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Figure 4. Endogenous Risk. For 1000 iterations, γ1 = 0.05, γ2 = 0.0005, σ2
S = 0.435,

A = 1.15, σ2
D = 0.28, µ = 1, R = 1.007, ρ = 0.45

5 Quantitative Analysis

In order to keep the model tractable and focus on the interplay between learning,

the participation channel, and stock prices we made strong simplifying assumptions.

Nonetheless, it is illustrative to calibrate the model to give some measure of quantitative

importance to the participation channel.

5.1 Parameter Values

The parameters are calibrated according to the values in Table 2. The risk aversion

ρ is calibrated to a value within the range of studies found in Babcock, Choi, and

Feienerman (1993) at 0.45. The historical average real interest rate in the U.S. is 2.7%

so we take the gross quarterly rate which is R = 1.007. Next the volatility of dividends

σ2
D is taken from a Hodrick-Prescott (HP) filter of quarterly real historical stock market

dividend data from 1927 to 2017 from Robert Shiller’s database which is 0.28. For mean

dividends µ we choose a value of 1 where the ratio of mean dividends to the standard

deviation is sufficiently high such that the probability of negative dividends is unlikely.

The volatility of supply σ2
S is taken from Baker and Wurgler (2000) who estimate the

quarterly volatility of shares in the S&P 500 at 0.435. The gain parameter γ1 is chosen

similarly to past studies at 0.05. Branch and Evans (2006) show that this parameter

value is consistent with the data.

Next, we choose the cost parameter A = 1.15 as a benchmark which corresponds

to the participation rate consistent with the data. Then, the gain for the risk, γ2 is

0.0005 which is calibrated such that the ratio of gains γ1

γ2
is sufficiently high to insure
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stability. Branch and Evans (2011) show that it is important that the gain for the risk

be smaller than the gain for expected prices to insure stability. The endogenous share

parameter ξ is chosen conservatively to be 0.3 which means that the shares start to

become endogenous when prices decline to 30% of the fundamental value. Finally, we

are interested in the unconditional moments so we take a long, transient simulation of

two million iterations and burn-in the first one million.

Parameters Meaning Calibration Source/Target

ρ Risk Aversion 0.45 Babcock, Choi, Feinerman (1993)

σ2
D SD of Dividend 0.28 HP filtered dividend volatility

σ2
S SD of Supply 0.435 Baker and Wurgler (2000)

R Real Interest Rate 1.007 Average U.S. Real Interest Rate

µ Mean Dividend 1 Calibrated to reasonable Mean-SD ratio

A Cost Parameter 1.15 Calibrated to SIPP participation rate

γ1 Price Gain 0.05 Branch and Evans (2006)

γ2 Risk Gain 0.0005 No prior reference

ξ Endogenous Supply 0.3 Projection facility

Table 2. Parameter Values.

5.2 Moments

The moments we are interested in matching are as follows. The quarterly volatility of

the HP filtered log prices from 1927 - 2017 is 0.132. The mean participation rate from

the SIPP participation data from 1995 - 2013 is 0.373 for both direct and indirect stock

holdings, and the volatility of participation rates is 0.008. We do a quarterly interpola-

tion of the SIPP stock market participation data including retirement accounts. There

is a small trend component at the beginning of the series due to structural changes

with tax policies so we take the HP filter of the series. We stress that this number

is a noisy indicator of the true parameter and that future studies may want to find a

more comprehensive way of measuring the volatility of participation rates. The mean

and standard deviation of annualized excess returns are 1.061 and 0.313. Finally, the

autocorrelation of quarterly HP filtered log prices is 0.842.
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No Risk Risk Data

Sd(p) 0.011 0.031 0.132

Mean(e) 0.368 0.37 0.373

Sd(e) 0.004 0.008 0.008

Mean(Re) 1.032 1.032 1.061

Sd(Re) 0.048 0.047 0.313

ρ(p, p−1) 0.625 0.959 0.842

Table 3. Moments Table. Sd(·) is the standard deviation, Re is the excess returns,

and ρ(·) is the correlation coefficient.

5.3 Results

Table 3 documents the calibration results. As we can see, the learning about risk

model does well on many dimensions, particularly when taking into account that the

model is highly stylized. Even with the model abstracting away from serially correlated

shocks we can see that the risk specification can match 25% of the volatility in stock

prices. Since we abstract from many important features of the stock market, we can

interpret the findings as endogenous participation independently accounting for 25%

of the excess volatility in stock prices. We also find that learning about risk generates

3 times more volatility than learning about returns. Therefore, we can attribute most

of the volatility from learning about risk rather than learning about returns. Next we

can also match the volatility of participation rates which is 0.008. In contrast, the

model without learning about risk is unable to generate the necessary volatility in the

participation rate and generates a standard deviation of 0.004.

We can also match half of the mean excess returns at 1.032 and we do much better

at matching the autocorrelation of stock prices at 0.959 while without learning about

risk, the autocorrelation is 0.625. We are unable to match the standard deviation

of excess returns at 0.047. We argue that the current model with iid shocks is not

a good model for returns. With iid dividends and autocorrelation of prices, due to

learning about risk, prices are moving in the same direction per period which removes

the agents’ capital gains.6

Learning about returns matters but learning about risk is necessary to generate

volatility that matches the magnitudes found in the data. As before, with learning

about risk the key mechanism is as follows. An increase in the subjective risk, decreases

the participation rate which leads to a decrease in the price leading to a decrease in

the subjective risk. This process continues until risk estimates are adjusted and then

the mechanism moves in the opposite direction. These cyclical movements depend on

the magnitude of the shocks and the magnitude of steady-state deviations. As enough

6Suitably extended versions of the model can explain returns such as in Adam et al (2017).
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data is realized, the process stabilizes around the steady-state values.

The model mechanism is also externally validated by survey responses provided

in Arrondel et al (2014) where 20.7% of the sample stated the reason they do not

invest in the stock market is that it is too risky. If one takes risk to be the variance

of returns as in the context of our model, then it provides a natural explanation for

limited participation rates and excess volatility in stock prices.

6 Conclusion

We have demonstrated that a simple asset pricing model with a participation decision

can do well at matching moments of the data when allowing for agents to adaptively

learn about risk and returns. The model adds a participation channel and endogenizes

the risk which allows feedback effects to occur when combined with expectations and

learning. The two key mechanisms are due to learning about risk and learning about

returns. The learning about returns mechanism works as follows. When expected

returns increase, participation increases, which leads to an increase in the price. This

leads to a decrease in the expected return and hence decreases participation. Similarly

for learning about risk, when expected risk increases, participation decreases which

decreases the price. This leads to a decrease in the expected returns which further

increases the expected risk and hence further lowers participation. When risk estimates

are finally corrected, the feedback mechanism moves in the opposite direction. The

combination of these two channels are what leads to the agent’s subjective risk being an

important driver of stock price volatility, with learning about risk being quantitatively

more important.

Future research will take the quantitative implications seriously by introducing

serially correlated shocks and heterogenous agents. Also a focus of future empirical

research will be to collect and better understand the time-series of participation rates.

7 Appendix

Derivation of Equation (7): The expected value of the utility of c1t is:

Etu(c1t) = Et[−e−ρc1t ] = −e−ρEtc1t+
ρ2

2
Vtc1t (17)

since c1t is normally distributed. Then:

Etc1t = R+ xt[Et(pt+1 +Dt+1)−Rpt]

Vtc1t = x2
tσ

2
p

We know:

xt =
Et(pt+1 +Dt+1)−Rpt

ρσ2
p
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Plugging this into Equation (17) we get:

Etu(c1t) = −e−ρR−ρ[Et(pt+1+Dt+1)−Rpt]+ ρ2

2
x2
tσ

2
p

= −e
ρR−ρEt(pt+1+Dt+1)−Rpt

ρσ2
p

+ ρ2

2

[
Et(pt+1+Dt+1)−Rpt

ρσ2
p

]2

σ2
p

= −e
−ρR− [Et(pt+1+Dt+1)−Rpt]

2

2σ2
p

And thus:

Γ(pt) = e−ρR − e
−ρR− [Et(pt+1+Dt+1)−Rpt]

2

2σ2
p

Proof of Proposition 1: We focus on interior equilibria where
Sρσ2

p

µ < Ae−ρR[1 −

e
− µ2

2σ2
p ]. Fix a set of parameters. Both 1

x̄ and ē are compositions of continuous functions

and hence continuous. With market clearing, 1
x̄ = ē

S implies 1
x̄ is below the ē equation

at p̄ = 0. If the equation 1
x̄ is above the participation curve, then the equilibrium

condition is the intercept of the participation curve. Next we take the limit of 1
x̄ as p̄

goes to µ
R−1 . The equation 1

x̄ approaches ∞. Since ē is bounded and monotonic in p̄,

we know that there exists a point on 1
x̄ where 1

x̄ > 1. Hence by, the intermediate value

theorem, there exists a point where they cross. Because both curves are monotonic

within the given parameter space and since x̄ > 0, it is unique. Hence, there exists a

unique steady-state p̄.

Proof of Proposition 2: We implicitly differentiate ē with respect to the param-

eters. µ is not in the equation hence ∂ē
∂µ = 0. ∂ē

∂R , ∂ē
∂σ2
p
, ∂ē
∂A all follow from standard

differentiation. A appears as a multiplier and hence ∂ē
∂A > 0. ∂ē

∂R = Aē3ρ(1−e
ρ2σ2

p

2ē2 )

ē3e
Rρ+

ρ2σ2
p

2ē2 +Aρ2σ2
p

.

Since e
ρ2σ2

p

2ē2 > 1 =⇒ ∂ē
∂R < 0. ∂ē

∂σ2
p

= ēAρ2

2ē3e
Rρ+

ρ2σ2
p

2ē2 +2Aρ2σ2
p

=⇒ ∂ē
∂σ2
p
> 0. ∂ē

∂ρ =

Aē3R−Aē3e
ρ2σ2

p

2ē2 +Aēρσ2
p

ē3e
Rρ+

ρ2σ2
p

2ē2 +Aρ2σ2
p

. Hence ∂ē
∂ρ is positive when R > e

ρ2σ2
p

2ē2 +
ρσ2
p

ē2
, negative if the sign

is opposite and 0 at equality.

Proof of Proposition 3: We use the chain rule. Let Ω be the set of model pa-

rameters. Then p̄ = f(ē(Ω),Ω) which implies ∂p̄
∂Ω = ∂f

∂Ω + ∂f
∂ē

∂ē
∂Ω . A only appears in ē.

∂ē
∂A > 0 hence, ∂p̄

∂A > 0. µ does not appear in ē and ∂x̄
∂µ > 0 hence ∂p̄

∂µ > 0. ∂x̄
∂R < 0

and ∂ē
∂R < 0, hence ∂p̄

dR < 0. ∂x̄
∂σ2
p
< 0 and ∂x̄

∂ρ < 0. ∂p̄
∂ρ = −

[
σ2
p

ē −
ρσ2
p
∂ē
∂ρ

ē2

]
S

R−1 and

∂p̄
∂σ2
p

= −

[
ρ
ē −

ρσ2
p
∂ē

∂σ2
p

ē2

]
S

R−1 . Then ∂p̄
∂σ2
p
< 0 if ∂ē

∂σ2
p
< ē

σ2
p
⇐⇒ σ2

pAρ
2

2ēee
Rρ+

ρ2σ2
p

2ē2 +2Aρ2σ2
p

< 1
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⇐⇒ σ2
pAρ

2(−2ē3e
Rρ+

ρ2σ2
p

2ē2 −1)

2ē3e
Rρ+

ρ2σ2
p

2ē2 +2Aρ2σ2
p

< 0 which is always true. ∂p̄
∂ρ is positive if ∂ē

∂ρ > ē
ρ and

negative if less than, 0 at equality.

Proof of Proposition 4: Proposition 5.2 in Evans and Honkapohja (1995) is the

result we use to prove our case. The requirements are that the gain parameter γ > 0

is a decreasing sequence, the shocks εSt are iid with E(εSt ) = 0, V ar(εSt ) > 0 and either

(1) |εSt | < α with probability 1 for all t or (2) E|εSt |p exists and is bounded in t for

each p > 1, and the derivatives of G and H are bounded. We claim to satisfy condition

(1). First εSt is iid by definition. Next for some α sufficiently small, as long as σ2
S is

sufficiently small, or we bound the distribution of εSt , then Proposition 5.2 holds.

Proof of Proposition 5: The proof depends on Evans and Honkapohja (2001) E-

stability condition which requires the eigenvalues of the T-map to have negative real

parts. First, if the sequence of shocks {εSt }∞t=0 are such that |εSt | < α with proba-

bility 1 for all t and α > 0 is sufficiently small then Proposition 4 holds and there

exists a unique noisy steady-state REE. Our PLM is pt = a + νt which implies that

pet = a + νt = pet+1. Then the ALM is pt = R−1
[
a+ µ− S

et
ρσ2

p

]
. Then the T-map is:

da
dτ = R−1

[
a+ µ− St

et
ρσ2

p

]
− a which can be rewritten as da

dτ = a(R−1 − 1) + R−1(µ−
St
et
ρσ2

p). Furthermore, since e is a function of a, we need to sign the derivative of e with

respect to a which is de
da < 0. Given that de

da < 0, the T-map satisfies the local stability

conditions by definition and hence proves our proposition.
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